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ABSTRACT
Competence modeling is critical for the efficient and safe operation

of semi-autonomous systems (SAS) with varying levels of auton-

omy. In this paper, we extend the notion of competence modeling

by introducing a contextual competencemodel. While previous work

on competence-aware systems (CAS) defined the competence of a

SAS relative to a single static operator, we present an augmented

operator model that is contextualized by Markovian state infor-

mation capable of capturing multiple operators. Access to such

information allows the SAS to account for the stochastic shifts that

may occur in the behavior of the operator(s) during deployment

and optimize its autonomy accordingly. We show that the extended

model called Contextual Competence Aware System (CoCAS) has

the same convergence guarantees as CAS, and empirically illustrate

the benefit of our approach over both the original CAS model as

well as other relevant work in shared autonomy.
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1 INTRODUCTION
Recent efforts towards the deployment of autonomous systems in

the open world have spurred an increased interest in the develop-

ment of systems that strategically manage the trade-off between

fully autonomous operation and partial reliance on human assis-

tance. Such systems are often desirable due to (1) their ability to

more effectively handle a wider array of tasks than either agent

could execute on their own [9, 41], and (2) their ability to ensure safe

operation and risk mitigation [16, 20]. These properties are partic-

ularly desirable in many open-world domains such as autonomous

driving [7, 8, 30, 36], medical robotics [15, 40], and extraterrestrial

science robotics [17, 23, 34].

In this paper, we focus on semi-autonomous systems [41] that
can operate autonomously under certain conditions, and may oth-

erwise require human assistance to achieve their assigned task.
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Specifically, the aim of this paper is to extend the notion of compe-
tence modeling we introduced in prior work [2] where we define

competence in the context of discrete levels of autonomy [24]. Each

level of autonomy gives the human operator a specific assistive

role, and the overall goal is to optimize the system’s reliance on

the human operator. In other words, the goal is to optimize the

trade-off between autonomous operation and human assistance,

given the associated costs and benefits of the available forms of

human help.

As discussed by Costen et al. [12], the competence-aware system
(CAS) framework introduced in [2] relies on a number of strong as-

sumptions about “human authority” that may diminish the applica-

bility of the framework to certain real-world domains. In particular,

the original model assumes that (1) there is only a single human

operator, (2) the human is perfectly consistent, and (3) the human

is perfectly safe and has no variation in performance. Essentially

the human is treated as a stationary black box oracle. However,

humans are not perfectly consistent and may themselves have vari-

ations in performance due to differences in skills or state. This

is particularly relevant as the proposed notion of competence is

specifically a measure of an autonomous agent’s ability to operate

in a shared-autonomy setting rather than its underlying technical

capacity directly, and is hence fundamentally conditioned on its

capacity to interact with the human operator.

On the other hand, Costen et al. [12] focuses specifically on the

shared-autonomy problem of optimal operator selection in a sto-

chastic multi-operator context where the current state of each oper-

ator is never directly observable. However, the proposed stochastic-
operator semi-autonomous system (SO-SAS) model does not consider

several features we believe are highly relevant in many current

shared-autonomy settings. First, the authors do not consider mul-

tiple levels of autonomy, proposing an all-or-nothing operative

control structure; second, each operator behaves according to a

fixed policy when in control; and third, the reward function is

independent of the operator (up to the transition dynamics).

In this work, we are primarily interested in how the concepts of

both competence modeling and stochastic operator models can be

applied more generally to autonomous systems. Developing such

a model is important in the context of a fleet of agents that are,

collectively, supported by a (smaller) team of remote (human) tele-

operators. We believe that such systems will become increasingly

prevalent as semi-autonomous systems are deployed in greater

numbers in more complicated domains, necessitating human in-

volvement for either technical, ethical, or legal reasons [19, 21, 22].

Example: Consider a fleet of semi-autonomous vehicles used to de-
liver packages that are supported by a small group of remote human
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operators. The vehicles may require varying levels of tele-operative
support to handle challenging, hazardous, or socially ambiguous situ-
ations that may constrain the autonomous capacity of the vehicles.
For instance, tele-operative control of the vehicle may be required to
complete a challenging maneuver, or to approve dropping off a pack-
age when no human is around to accept it. However, the availability
and capabilities of the tele-operators may vary with time and global
contextual information such as the current demand, the weather, or
the time of day.

We propose a natural extension of our previous framework,

competence-aware systems Basich et al. [2], which includes multi-

ple stochastic human operators in a capacity similar to what was

proposed by Costen et al. [12]. The model, which we call contex-
tual competence-aware systems (CoCAS), can operate in multiple

levels of autonomy and is capable of optimizing its autonomy with

respect to global contextual information about the world, and local

contextual information about each human operator. We show that

not only can the CoCAS model fully represent the CAS model as

defined in [2], but also the stochastic-operator SAS (SO-SAS) model

defined in [12] when the state of each operator is fully observable.

Importantly, our model addresses the limitations of both models

without sacrificing the representational power of either. Whereas

the SO-SAS model only considers operators (autonomous and hu-

man) with predefined fixed policies and separates the decision-

making of each entity from the selection of the entity, leading to

potentially suboptimal behavior by the autonomous operator, the

CoCAS model integrates both levels of decision-making together,

leading to more proactive and globally robust decision-making that

improves the overall performance of the system.

2 RELATEDWORK
There is a growing body of research on when and how an au-

tonomous system should proactively seek human assistance. Wray

et al. [35] formalized the decision-theoretic planning problem for a

semi-autonomous system of type II (SAS-II) with multiple actors

andmade explicit the problem of transferring control between actors
in a SAS-II, focusing on uncertainty surrounding the capacity of

the human driver to take control of the system at any given time in

a safe capacity [35, 37, 38]. Costen et al. [12] extended this frame-

work to consider stochastic operators whose internal states, and

consequently the performance of each operator, can vary through

time on more impacting factors than just their ability to arrest

control of the system. The authors focus on the problem of de-

termining which among a number of operators for a task (one of

which is the autonomous robotic agent) should be given control

at any given action-step in order to maximize the utility over the

task’s entire horizon conditioned on the agent’s belief over the state

of each operator but assume a fixed policy pre-computed for each

operator, separating the “second-to-second” decision-making of the

execution of the task from who is controlling that execution.

In prior work, we also extended the semi-autonomous systems

framework by integrating a notion of competence modeling predi-

cated on discrete levels of autonomy in what we call a competence-
aware system (CAS) [2]. Levels of autonomy is a paradigm for

reasoning about the trade-off in autonomous operation and hu-

man assistance, that is, gradations in limitations in autonomous

operation and their commensurate levels and forms of human as-

sistance [24], and has been well explored in both the academic

literature [4, 11, 24, 31] as well as industrial applications [3, 29, 39].

In particular, a CAS learns its competence from human feedback

acquired through various forms of interaction and integrates the

learned competence model into its planning process. However, the

CAS framework is only considered in the setting where there is

a single stationary human authority and does not account for the

possibility of multiple heterogeneous humans, or non-stationary

human states.

Several other forms of shared autonomy (SA) that vary the dy-

namics and capacity of how autonomy is shared between multiple

actors have been proposed over the years. Mixed-initiative control

is a shared autonomy framework in which a human operator and

an autonomous agent may individually take initiative to operate

at different stages of execution to best leverage the utilities of the

respective actors [10, 11, 14, 18]. More related to the ideas discussed

in this paper comes from Petousakis et al. [25] who furthered Chiou

et al. [11]’s approach by modeling the cognitive availability of the

human expert based on real-time vision of the human to better

inform the control-switching decision. Our approach differs from

this area of research in that we assume that an automated planner

determines the optimal level of autonomy for an agent to carry out

rather than letting each entity initiate control independently.

Symbiotic autonomy [6, 28, 32, 33] is another related area of

shared autonomy where the human and agent are separated as

entities operating in the same environment (that is, operating inde-

pendently in pursuit of potentially independent goals). In symbiotic

autonomy, each agent may benefit from helping the other to achieve

the others’ goals in a symbiotic capacity, but their objectives may be

independent. This differs from the setting that we consider where

there is only a single objective and a single decision-making agent

that can utilize human operators as a resource to provide assistance

as needed in order to best achieve the objective.

3 BACKGROUND
In this section, we briefly describe the relevant background material

needed to understand the contributions proposed in this paper. The

competence-aware system (CAS) [2] is a planning model defined

by integrating three underlying models: the (1) domain model, (2)
autonomy model, and (3) human feedback model. The domain model

is originally defined as a stochastic shortest path problem (SSP) [5],

although in our work we instead model it more generally as a

Markov decision process (MDP) [26].

An MDP is represented by the tuple ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩ where
• 𝑆 is a finite set of states,

• 𝐴 is a finite set of actions,

• 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is a transition function representing

the probability of arriving in state 𝑠′ having taken the action

𝑎 in state 𝑠 ,

• 𝑅 : 𝑆 ×𝐴 → R is a reward function representing the imme-

diate expected reward of taking action 𝑎 in state 𝑠 , and

• 𝛾 ∈ (0, 1] is the discount factor.
A solution to anMDP is a policy, denoted 𝜋 : 𝑆 → 𝐴, which maps

states to actions. A policy 𝜋 induces the state-value function 𝑉 𝜋
:

𝑆 → R, defined as 𝑉 𝜋 (𝑠) = 𝑅(𝑠, 𝜋 (𝑠)) +∑
𝑠′∈𝑆 𝑇 (𝑠, 𝜋 (𝑠), 𝑠′)𝑉 𝜋 (𝑠′),



which represents the expected cumulative reward when starting

in the state 𝑠 and following the policy 𝜋 . Similarly, a policy 𝜋

induces the action-value function 𝑞𝜋 : 𝑆 × 𝐴 → R, defined as

𝑞𝜋 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + ∑
𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′)𝑉 𝜋 (𝑠′) representing the ex-

pected cumulative reward when starting in state 𝑠 , taking action 𝑎,

and then following policy 𝜋 .

The autonomy model is represented by the tuple ⟨L, 𝜅, 𝜇⟩ where,
L = {𝑙0, ..., 𝑙𝑛} is the finite, partially ordered set of levels of au-

tonomy where each 𝑙𝑖 corresponds to some set of constraints on

the system’s autonomous operation; 𝜅 : 𝑆 × 𝐴 → P(L) is the
autonomy profile mapping states 𝑠 ∈ 𝑆 and actions 𝑎 ∈ 𝐴 to a sub-

set of L (note that P(L) denotes the powerset of L), prescribing

constraints on the allowed levels of autonomy for any situation;

and 𝜇 : 𝑆 × L × 𝐴 × L → R represents the cost of autonomy of

performing action 𝑎 ∈ 𝐴 at level 𝑙 ′ ∈ L given that the agent is in

state 𝑠 ∈ 𝑆 and just operated in level 𝑙 ∈ L in the previous state.

Finally, the human feedback model describes the agent’s knowl-

edge about, and predictions of, its interactions with the human.

Notably, this human feedback model only considers a single human

authority and does not use any available contextual information

about the human operator to reason about stochastic changes in

human behavior, state, or capability.

4 CONTEXTUAL COMPETENCE-AWARE
SYSTEMS

In this section, we outline and define the Contextual CAS (Co-

CAS) model. The CoCAS model includes one autonomous agent

who is the primary operative agent, and 𝑁 (≥ 1) human opera-

tors H = {𝐻1, ..., 𝐻𝑁 }. Each human operator 𝐻𝑖 has an operator

state, 𝜃𝑖 , from a set of possible human states, ΘH𝑖
, at each timestep.

Each ΘH𝑖
may be unique but we henceforth simply write ΘH for

notational convenience by observing that we could set a single

ΘH = ∪𝑖=1:𝑁ΘH𝑖
. Additionally, the operator model may encode

additional context information 𝜃𝑐 ∈ Θ𝐶 . In general, ΘH encodes

local information about an individual operator, such as whether

they are tired or awake, their current capabilities as a tele-operator

or authority, or the quality of their connection to the autonomous

agent. On the other hand, Θ𝐶 represents global information about

the world, the set of operators as a whole, and other external con-

textual elements that may impact the competence of the system,

for instance, the current active demand by other agents in the fleet,

which operators are currently busy or available, the global weather

conditions, etc.

In this work, we employ a more general domain model than

in the original CAS formulation [2], represented as an arbitrary

reward MDP. The autonomy model remains unchanged from the

CAS model. Our main extension of CAS lies in how we extend the

human feedback model to account for the stochastic change in the

behavior of the human operators. Consequently, we refer to the new

model used as the operator model due to the addition of contextual

information regarding the operators that lies beyond the scope

of just feedback. Note that unlike Costen et al. [12] we consider

full observability of the contextual information in the operator

model. In the context of tele-operating a fleet of semi-autonomous

agents with a team of human operators; the contextual information

discussed above can be reasonably acquired and used to optimize

autonomy. We now describe our proposed operator model.

4.1 Operator Model
We formally represent the operator model as the tuple ⟨𝑆H,𝑇H, Σ,
𝜆, 𝜌, 𝜏H⟩ where

• 𝑆H = Θ𝑁
H × Θ𝐶 represents the joint operator state of N the

operators with additional information. It consists of N+1

factors. The 𝑖𝑡ℎ factor represents the state of the 𝑖𝑡ℎ operator

(e.g., busy, active, tired, etc.). The 𝑁 + 1
𝑡ℎ

factor indicates ad-

ditional contextual information (e.g., current active operator,

network quality, etc.),

• 𝑇H : 𝑆H × 𝑆 × L × 𝐴 × L → Δ |𝑆H |
is the operator-state

transition function and represents how the operator-state

vector, 𝑆H , may change conditioned on the agent taking

action 𝑎 at level 𝑙 in state 𝑠 having just acted in level 𝑙 ′, given
operator state 𝑠H ,

• Σ = {𝜎1, ..., 𝜎𝑘 } is the set of possible feedback signals the

agent can receive from each operator,

• 𝜆 : 𝑆H × 𝑆 × L × 𝐴 × L → Δ |Σ |
is the feedback profile

that represents the probability of receiving signal 𝜎 from the

current operator 𝑖 when performing action 𝑎 ∈ 𝐴 at level

𝑙 ′ ∈ L given that the agent is in state 𝑠 ∈ 𝑆 and just operated

in level 𝑙 ∈ L, and conditioned on the 𝑖𝑡ℎ operator’s state,

• 𝜌 : 𝑆H × 𝑆 × L × 𝐴 × L → R+ is the human cost function
and represents the positive cost to the current operator 𝑖

of performing action 𝑎 ∈ 𝐴 at level 𝑙 ′ ∈ L given that the

agent is in state 𝑠 ∈ 𝑆 and just operated in level 𝑙 ∈ L, and

conditioned on the 𝑖𝑡ℎ operator’s state, an

• 𝜏H : 𝑆H × 𝑆 ×𝐴 → Δ |𝑆 |
is the human state transition func-

tion that represents the probability of the current operator 𝑖

taking the agent to state 𝑠′ ∈ 𝑆 when the agent attempted

to perform action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 but the operator took

over control, conditioned on the 𝑖𝑡ℎ operator’s state,

Notably, unlike in [12] where the transition model of each opera-

tor is dependent only on the state of each operator, above transition

model can be affected by both the agents state, action, and level of

autonomy. We believe that this better reflects domains in the real

world where the operators may themselves be responsive to the

operation of the agent. For example, if the agent moves into a haz-

ardous area or attempts to perform a safety-critical or high-value

action, one or more operators may be notified that urgent attention

is needed prompting a change in operator state.

4.2 CoCAS Model
A contextual competence-aware system (CoCAS) is the natural exten-

sion to the CAS model with the new operator model defined above.

Unlike a standard CAS model, the CoCAS accounts for the operator

in control, and their state, when computing its competence and

the best level of autonomy to act in. Additionally, by integrating

𝑇H , the transition model over operator states, into the planning

model, a CoCAS can proactively plan in ways that optimize (in

expectation) the likelihood of interacting with the right operator

in the right state when needed.



Figure 1: Illustration of the information flow in a CoCAS.

Definition 1. A contextual competence-aware system S is

represented by the tuple ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩, where

• 𝑆 = 𝑆H × 𝑆 × L is a set of factored states such that 𝑆 is the

set of domain states and L is the levels of autonomy,

• 𝐴 = 𝐴 × L is a set of factored actions such that 𝐴 is the set

of domain actions and L is the levels of autonomy,

• 𝑇 : 𝑆 ×𝐴 → Δ |𝑆 |
is a transition function comprised of a state

transition function 𝑇𝑙 : 𝑆 × 𝐴 → Δ |𝑆 |
for each level 𝑙 ∈ L,

and 𝑇H ,

• 𝑅 : 𝑆 ×𝐴 → R is a reward function comprised of 𝑅 : 𝑆 ×𝐴 →
R, 𝜇 : 𝑆 ×𝐴 → R, and 𝜌 : 𝑆 ×𝐴 → R, and

• 𝛾 ∈ (0, 1] is the discount factor.

While construction of 𝑆 and 𝐴 is intuitive from the definition

above, consider the following example of construction of 𝑇 based

on the example provided in [2], which we repeat here for clarity: Let

L = {𝑙0, 𝑙1, 𝑙2, 𝑙3} correspond to No Autonomy, Verified Autonomy

(taking a action requires human approval), Supervised Autonomy

(human operator is their to take over control if needed), and Full

Autonomy. Also let Σ = {∅, ⊕, ⊖, ⊘}, corresponding to no feedback,
approval, disapproval, and override respectively. Furthermore, we

assume that ⊕ and ⊖ can only be received in 𝑙1, and ⊘ and ∅ only

in 𝑙2.We can now specify the state transition function of this

CoCAS. Given 𝑠, 𝑎, and 𝑠′, we define 𝑇 as follows:

𝑇 (𝑠, 𝑎, 𝑠′ ) =



𝜏H ( (𝑠, 𝑠H ), 𝑎, 𝑠′ )∗TH (s, a, s′H ), if 𝑙 = 𝑙0,(
𝜆 (⊕ |𝑠, 𝑎)𝑇 (𝑠, 𝑎, 𝑠′ )+

𝜆 (⊖) [𝑠 = 𝑠′ ]
)
∗TH (s, a, s′H ), if 𝑙 = 𝑙1,(

𝜆 (∅ |𝑠, 𝑎)𝑇 (𝑠, 𝑎, 𝑠′ )+

𝜆 (⊘ |𝑠, 𝑎)𝜏H (𝑠, 𝑎, 𝑠′ )
)
∗TH (s, a, s′H ), if 𝑙 = 𝑙2,

𝑇 (𝑠, 𝑎, 𝑠′ )∗TH (s, a, s′H ), if 𝑙 = 𝑙3,

where 𝜆(·) = 𝜆(·|𝑠, 𝑎) and [·] denotes Iverson brackets, and bolded

text indicates CoCAS-specific elements of the transition dynamics.

C1 C2 D1

D2

R(D1) = 100

R(D2) = 10

T1

T2

T3

Normal

Icy

Water

Destination 

Figure 2: A simple MDP to explain CoCAS, CAS, and SO-SAS

We now present a simple example scenario to demonstrate the

difference in the policy calculated under different shared autonomy

models (CoCAS, CAS, and SO-SAS).

Example 1. (Fig 2): Consider the scenario where the robot has to

navigate from its current location to one of the destinations (D1

and D2). The reward for 𝐷1 is greater. Further, going into the water

is prohibited. We also have two types of human operators; experts

and apprentices. The robot and the apprentices are only capable of

navigating in the normal cells and if they move on icy cells they

will fall into nearby water cells with a high probability. On the

other hand, the expert can navigate in both normal and icy cells.

At the beginning of each episode, either an expert or an apprentice

is available with equal probability. The expert’s stationary policy

T1 and the apprentice’s stationary policy T3 are given. The goal of

each model is to calculate a shared autonomy policy for the robot.

When an apprentice is available the robot can not do better than

T3 so CoCAS selects T3. When an expert is available both T1 and

T2 are optimal. But T2 requires fewer human assistants so CoCAS

will select T2. On the other hand, SO-SAS will first calculate the

robot’s policy in isolation. The optimal isolated policy for the robot

is T3. After that, it will try to combine the robot’s and the expert’s

policies. For SO-SAS, the only way to get to the optimal destination

when an expert is available is to transfer control at cell C1. while

this also achieves optimal reward like CoCAS it creates unnecessary

reliance on humans. Finally, the CAS model can not distinguish

between expert and apprentice. Therefore, the CASmodel will think

the operator is successful ∼ 50% of the time at navigating on icy

cells. As a consequence, a CAS agent will always take T3. This is

suboptimal when an expert is available.

4.3 Learning and Optimization for CoCAS
One of the crucial differences between the SO-SAS and CoCAS

models is that the latter improves different components of its model

by learning from experience over time. There are several learnable

components in the CoCAS model including 𝜅 in the Autonomy

model, and 𝜆,𝑇H, 𝜏H in the Operator model. These components

can be initialized with prior information, and physical or legal

constraints [2]. The model and policy are updated after collect-

ing a sufficient amount of new experience. Like the CAS model,

CoCAS also employs a gated-exploration strategy, i.e., the agent

needs explicit human permission to explore new autonomy levels.

This ensures safety while gathering information about previously

unexplored parts of the model.

In order to optimize the multidimensional reward function 𝑅 =

[𝑅, 𝜇, 𝜌], several optimization approaches can be taken. In this paper,

we assume a linear scalarization with function 𝑓 parameterized



by a weight vector w such that 𝑓 (w, 𝑅) = w[𝑅, 𝜇, 𝜌]𝑇 [27]. With

some modifications, the problem could be extended to handle both

lexicographic [38] and constrained [1] models.

4.4 Properties
For consistency, we re-use the original notation from Basich et al.

[2], and briefly re-state the primary properties introduced in [2].

𝜆-stationarity is the property of a CoCAS, in which the feedback pro-

file, 𝜆, has converged to the point where there is no expected value

from acquiring new feedback from the human. Level-optimality is

the condition in which a CoCAS, operates at its competence for a

given state and action under its optimal policy, although the defini-

tion does not require that the competence is explicitly known by

the system.

Unlike the cost-minimizing, goal-oriented SSP model used in

the original CAS model [2], we model the CoCAS using arbitrary-

reward maximizing MDPs, and restate the central definition of

competence in this setting:

Definition 2. Let 𝜆H : 𝑆 ×𝐴 → Δ |Σ |
be the stationary distribution

of feedback signals for the 𝑁 operators, H . The competence of

CoCAS S, denoted 𝜒S , is a mapping from 𝑆 × 𝐴 to the reward-
maximizing level of autonomy given perfect knowledge of 𝜆H .

Formally:

𝜒S (𝑠, 𝑎) = argmax

𝑙∈L
𝑞∗ (𝑠, (𝑎, 𝑙); 𝜆H) (1)

where 𝑞∗ (𝑠, (𝑎, 𝑙); 𝜆H) is the cumulative expected reward under the

optimal policy 𝜋∗ when taking action 𝑎 = (𝑎, 𝑙) in state 𝑠 condi-

tioned on the feedback distribution 𝜆H .

Note that we do not assume that 𝜆H is known by the CoCAS or

even by the human explicitly.

It is straightforward to observe that, under the same conditions
stated in Proposition 5.6 and Theorem 5.7 in [2], a CoCAS will also

converge to 𝜆-stationarity and level-optimality. The key observation

here is that the addition of multiple stochastic operators, each of

whom may have their own feedback profiles and cost functions,

is captured by 𝑆H , which is included in the state representation 𝑆 ,

and hence under the assumption that every (𝑠, 𝑎) ∈ 𝑆 ×𝐴 is visited

sufficiently in the limit, the system will still learn the optimal level

of autonomy for each operator in each operator state, which is

always fully observed.

Proposition 1. Let S be a CoCAS and let 𝜆
𝑠,𝑎
𝑡 be the random

variable representing 𝜆(𝑠, 𝑎) after having received 𝑡 feedback signals
for (𝑠, 𝑎) where each signal is sampled from the true distribution

𝜆H (𝑠, 𝑎). As 𝑡 → ∞, if no (𝑠, 𝑎) is starved, S will converge to

𝜆-stationarity (see Def. 5.4 Basich et al. [2]).

Proof Sketch. Let the expected value of sample information

(EVSI) on 𝜎 ∈ Σ for (𝑠, 𝑎) to be defined as in [2]. Fix (𝑠, 𝑎). As
each feedback signal for (𝑠, 𝑎) is drawn from the true distribu-

tion 𝜆H (𝑠, 𝑎) i.i.d, then by a straightforward application of the law

of large numbers, it follows that the sequence {𝜆 (𝑠,𝑎)𝑡 } will con-
verge in distribution to 𝜆

(𝑠,𝑎)
H = E[𝜆H (𝑠, 𝑎)]. Hence, it follows that

lim𝑡→∞ 𝑃𝑟 [|𝜆𝑠,𝑎𝑡 − 𝜆
𝑠,𝑎

H ] | > 𝜖] = 0 ∀𝜖 > 0. Consequently, as 𝑡 → ∞,

the probability that 𝜆
𝑠,𝑎
𝑡 = 𝜆

𝑠,𝑎

H defines a Dirac delta function with

point mass centered at 𝜆
𝑠,𝑎

H . The rest of the proof follows the proof

of Prop. 5.6 in [2]. □

Proposition 2. LetS be a CoCAS that follows any level-exploration

strategy that ensures a non-zero probability that all reachable lev-

els of autonomy are explored and switches to exploitation once

𝜆-stationarity has been reached, and where 𝜒S (𝑠, 𝑎) is reachable
from 𝜅0 for all (𝑠, 𝑎) ∈ 𝑆 ×𝐴. Then if no (𝑠, 𝑎) is starved, as 𝑡 → ∞,

S will converge to level-optimality.

Proof Sketch. The proof follows that of the proof of Thm. 5.7

in Basich et al. [2]. By Prop. 1, S will reach 𝜆-stationarity, which

ensures that for any 𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴 the optimal level

of autonomy 𝑙∗ ∈ L is known in the limit, and hence we can

determine in the limit the competence 𝜒 (𝑠, 𝑎) for all 𝑠 ∈ 𝑆 and

𝑎 ∈ 𝐴 so long as that level is explorable by the system (that is, both

allowed under the human’s true autonomy profile and reachable

from the initial autonomy profile) with non-zero probability, which

is true by assumption. □

A notable departure from the original theory of competence mod-

eling in [2] is the additional dependence that competence has on
the human operator in the CoCAS model. Whereas we previously

assumed a completely stationary “human authority” that was per-

fectly consistent and non-variant in its performance and, critically,

that the human could always bail out the system when necessary

(if at a potentially high cost), that is not the case here. Rather, the

human operator(s) themselves may vary in both their performance

and reliability depending on their state or, more generally, the state

of the human-agent connection. For example the operator’s state

may reflect performance degradation via becoming more tired after

working for a long time, or alternatively variance in human-agent

communication stability, e.g. how stable the connection is.

While it is obvious that CoCAS is a generalization of CAS as

every CAS is a CoCAS with a single operator and a single state, it

is also the case that all fully-observable SO-SAS (that is, all SO-SAS

where the true operator states are fully observed at each state) can

be modeled as a CoCAS where the action taken by the CoCAS is

simply the selection operator in the context where each level of

autonomy is fully controlled by a single operator (including the

autonomous agent).

Proposition 3. Any fully-observable SO-SAS can be modeled as a

CoCAS.

Proof. Let𝑀 = ⟨𝑆𝐸 , 𝑋, 𝑠0, 𝑏0, 𝐴,Ω,𝑇 ,𝑂, 𝑅,𝛾⟩ be a fully- observ-
able SO-SAS, i.e. so Ω = 𝑆𝐸 × 𝑋 where 𝑆𝐸 is the environment

state space and 𝑋 = 𝑋1 × · · · × 𝑋𝑁 is the operator profile state

space, and the rest is as defined in [12]. Now, let L = {𝑙1, ..., 𝑙𝑁 }
be the levels of autonomy where 𝑙𝑖 represents full control by the

𝑖𝑡ℎ operator, where the first operator is the autonomous agent, and

let the CoCAS domain action set be ∅ such that 𝐴 = L � 𝐴 i.e.

the selection of which operator to be in control. Let 𝑆 = 𝑆𝐸 and

𝑆H = 𝑋 , so that 𝑆 = 𝑆H × 𝑆 × L = 𝑋 × 𝑆𝐸 × L, and assume by

construction that L does not impact either 𝑇 or 𝑅, so that we can

simplify that 𝑆 = 𝑆H × 𝑆 . Then we have that 𝑇 : 𝑆 ×𝐴 → Δ𝑆 � 𝑇 :

(𝑆𝐸 ×𝑋 ) ×𝐴 → Δ(𝑆𝐸×𝑋 ) � 𝑇 : (𝑆𝐸 ×𝑋 ) ×𝐴 × (𝑆𝐸 ×𝑋 ) → [0, 1],
and 𝑅 : 𝑆 ×𝐴 → R � 𝑅 : (𝑆𝐸 × 𝑋 ) ×𝐴 → R. □



Figure 3: Illustration of the abstractedmap for the unmanned
aerial vehicle domain. P(𝐻 ) and P(𝑅) are the probabilities of
taking a picture successfully by the human and the UAV.

5 EMPIRICAL EVALUATIONS
In this section we discuss the empirical evaluations performed to

validate the proposed CoCAS model’s efficacy against several other

baseline models. We begin by describing the two simulated domains

used to evaluate the CoCASmodel — aUAV surveillance domain and

an autonomous vehicle delivery domain.We then present the results

of simulations performed in these domains using the CoCAS model

and the following comparative benchmark models: Operator allows
for no autonomy throughout execution and is entirely performed by

a human operator (which may change during execution); R-SO-SAS
randomly selects the operator uniformly at each timestep to act,

where each operator follows a fixed pre-computed policy; SO-SAS
follows the model from [12], but where the operator state is fully-

observed at each timestep; C-SO-SAS follows the SO-SAS model

and also includes the cost model to operators during planning; and

CAS follows the model from [2].

5.1 Domain 1: UAV Surveillance
We apply our model to an extension of the UAV surveillance do-

main [12, 13] in which a UAV flies around a map to take photos

of 4 pre-designated waypoints until all photos are of sufficient

quality. Each waypoint has a different success rate of taking a

good quality picture based on its difficulty. After taking pictures

the UAV also have to verify from the human operator whether

the pictures are sufficiently good or if more picture is needed.

A state in the domain is represented by ⟨𝐼𝐷, 𝜃1, 𝜃2, 𝜃3, 𝜃4⟩, where
the 𝐼𝐷 indicates the current location (waypoint) of the UAV and

𝜃𝑖 ∈ {NoPicture,UnverifiedPicture,VerifiedPicture} represent of the
current picture status of their corresponding waypoint. The agent

has 7 actions available, {𝑊1,𝑊2,𝑊3,𝑊4, TakePicture,Verify,
EndMission}, where𝑊𝑖 indicates the action of going to waypoint

𝑖 . While taking good pictures provides a positive reward, moving

from one waypoint to another and taking pictures has an associated

operation cost representing factors such as fuel and time.

We extend the domain in the following ways. First, we introduce

three of the levels of autonomy used in [2]: no autonomy in which

the UAV queries the active human operator to take the picture,

verified autonomy in which the UAV queries the active human op-

erator for verifying the quality photos and permission to end the

Figure 4: Illustration of the abstracted map for the au-
tonomous vehicle delivery service domain.

mission, and unsupervised autonomy in which the UAV itself takes

the photo itself and move around waypoints. Second, we include

an extended operator model where an operator is assisting several

UAVs at a time, and based on the demand, the human operator

might have different availability. The operator state is represented

by 𝑆H = {𝜃𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 , 𝜃𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 , 𝜃𝐵𝑢𝑠𝑦}. Operator’s avail-
ability affects both their ability to help the UAV and the cost of

helping. In an available state, humans can help with all types of

actions. In a partially available state, the operator can help with

verification and mission end permission. Asking for taking pictures

will require more cost representing the opportunity cost of not

helping other UAVs. In a busy state, the operator is busy helping

another UAV and can not help with any action. In general, in all

waypoints, the human operator has a better or equal success rate

of taking a quality picture than the autonomous UAV.

5.2 Domain 2: AV Delivery Service
In this domain, an autonomous vehicle (AV) is tasked with picking

up and dropping off goods around an area, where its objective is to

reach its destination in the cost cost-effective manner. There are

two types of state: node states representing intersections, and edge

states representing road segments. Node states are represented by

the tuple ⟨ID, 𝑝, 𝑜, 𝑣, 𝜃⟩, and edge states by the tuple ⟨𝑢, 𝑣, 𝜃, 𝑜, 𝑙, 𝑟 ⟩.
Here, ID is the ID of the node, 𝑝 is 1 if there are pedestrians or else 0,

𝑣 is the number of relevant other vehicles, 𝜃 is the AV’s heading, 𝑢

and 𝑣 are the start and end node IDs, 𝑜 is 1 if there is an obstruction

in the AV’s lane or else 0, 𝑙 is the number of lanes on the road, and

𝑟 denotes road restrictions if any.

The AV drives autonomously (𝑙0) but may seek assistance from

human tele-operators: requesting approval for certain actions (𝑙1)
or requesting full tele-operative control of the vehicle (𝑙0) (which
may be denied). We model the existence of two human operators:

a local operator, H𝑙 , and a global operator, H𝑔 The local opera-

tor’s connection is always stable allowing them to provide support

for the AV in any capacity requested; however the local opera-

tor may become busy assisting another vehicle in the fleet when

the demand is high. A global operator, however, is always avail-

able, but their connection may be either stable or unstable. We

additionally consider contextual information, 𝜃𝐶 = ⟨𝑑, 𝑡,𝑤⟩ ∈ Θ𝐶

where 𝑑 is the current AV demand, 𝑡 is the time of day, and 𝑤 is
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Figure 5: CAS and CoCAS performance over time in UAV Surveillance.

the current weather condition. Hence we get that 𝑆H = {𝜃𝑏𝑢𝑠𝑦 ,
𝜃𝑎𝑐𝑡𝑖𝑣𝑒 } × {𝜃𝑠𝑡𝑎𝑏𝑙𝑒 , 𝜃𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 } × {H𝑙 ,H𝑔} × Θ𝐶 . When stable, the

global operator can provide verification for actions with consistency

0.8 consistency and full tele-operation in certain non-challenging

conditions; when unstable, the global operator can only provide

verification for actions with consistency 0.7. We also require that

the AV transfer control to a tele-operator when driving on roads

that are demarcated as pedestrian zones or school zones.
We define 𝑇H as follows: H𝑙 can become busy or available with

probabilities 1 − 0.5𝑑 and 0.5𝑑 at each step respectively. Note that,

when there is zero demand, H𝑙 is always available. At each step,

H𝑔’s connection quality changes with probability 0.25 and other-

wise remains the same. We model the human cost function, 𝜌 , to

be based off of the expected opportunity cost incurred when the

operator helps the AV and hence is unavailable to help another

vehicle in the fleet. We apply this cost only to the local operator

whose capacity is limited, and scale by the current fleet demand, 𝑑 ,

but apply no such cost to the global operator, as we assume there is

a sufficient supply to cover all demand at the lowered level of assis-

tance. However, there is always a small baseline cost of requesting

a transfer of control.

5.3 Empirical Results
Table 1 shows the results of our model (CoCAS) against the 5 base-

line models described above on the UAV surveillance domain. We

note that the results in this table are based on models that are fully

aware of the system’s true competence during planning to ensure

a fair comparison between models. These results show that the Co-

CAS achieves the highest cumulative reward, as well as the lowest

human cost over all models where autonomy is shared. We empha-

size that while C-SO-SAS performs very well, it is still outperformed

by CoCAS due to the phenomenon illustrated in Example 2. That is,

optimally switching between policies computed optimally in isola-

tion is not guaranteed to result in the optimal global policy. Finally,

we see SO-SAS achieving the highest domain reward at the expense

of the high human cost, resulting in a low total reward. This is

because SO-SAS does not consider human cost at all, resulting in

over-reliance on human operators.

Figure 5a plots the comparison in level-optimality as a func-

tion of episodes between the CAS and CoCAS levels as they learn

their competence over time. We can see that the CoCAS model

reaches 100% level optimality, whereas the standard CAS model

Models Domain Reward Human Cost Total Reward

Operator 262.52(±0.58) 240.81(±1.08) 21.70(±0.95)
R-SO-SAS 210.95(±0.94) 162.2(±0.81) 48.82(±0.91)
SO-SAS 285.81(±0.50) 178.4(±0.95) 107.40(±0.80)
C-SO-SAS 227.80(±0.96) 52.35(±0.31) 174.90(±0.89)

CAS 260.01(±0.60) 143.7(±0.94) 116.00(±0.30)
CoCAS 212.58(±1.01) 24.35(±0.10) 188.23(±0.95)
Table 1: Results Summary from UAV Surveillance.

only reaches 78%, as it is not able to properly converge feedback

profile given that the human operator states have been effectively

marginalized out, leading to an inability to learn its true competence

in a large portion of the state space. Figure 5b plots the comparison

in reward accrued by the CAS and CoCAS models as they learn

their competence over time. Unsurprisingly, the CoCAS’s reward

grows with the increased competence, whereas the CAS’s reward

flattens out by episode 500 after which point it fails to improve

its average performance. Table 2 shows the results of the CoCAS

against the same 5 baseline models on the AV delivery service do-

main; unlike the UAV domain, the objective here is to minimize the

cumulative cost. In particular, we can see that the CoCAS outper-

forms all other approaches in average cost across all 8 routes, and

the lowest standard deviation in all but one case as well (Route 8).

Figures 6 depicts results in the learning simulation for both the

CAS and CoCAS over 200 episodes. In the top set of figures, the

contextual information (time of day and weather conditions) is

fixed throughout all 200 episodes, whereas in the bottom set the

contextual information varies across episodes. Figures 6a and 6d

depicts the level optimality of actions taken by the system as a

function of the number of queries made to the human. When the

contextual information is fixed, we see that the CAS is able to

converge to 100% level-optimality, although at a much slower rate

than the COCAS, which reaches it very efficiently. When it is not

fixed, the CoCAS can still reach 100% level-optimality over actions

taken but the level-optimality of the CAS remains highly variable,

and as low as 70% due to its inability to appropriately learn across

unmodeled contextual information that alters the dynamics of the

operators’ feedback and interactions.

Figures 6b and 6e depict the mean and standard deviation of the

incurred cost for both the CoCAS and CAS over the 200 episodes.



Models Route 1 Route 2 Route 3 Route 4 Route 5 Route 6 Route 7 Route 8

Operator 67.09(±11.15) 207.31(±23.59) 118.86(±17.69) 169.39(±19.96) 110.75(±17.83) 182.83(±22.87) 160.37(±21.78) 96.91(±16.67)
R-SO-SAS 52.20(±43.73) 223.07(±54.83) 130.96(±45.69) 166.83(±42.61) 115.43(±42.86) 202.17(±59.32) 191.84(±62.82) 193.44(±44.71)
SO-SAS 42.08(±6.20) 168.76(±21.42) 87.71(±9.51) 127.44(±10.09) 76.06(±9.32) 136.38(±12.29) 111.31(±12.42) 72.96(±10.91)
C-SO-SAS 44.51(±4.59) 155.65(±13.72) 84.61(±8.52) 118.18(±7.67) 75.63(±6.35) 127.65(±9.87) 105.61(±11.80) 68.29(±9.75)

CAS 41.40(±6.62) 176.00(±25.62) 84.70(±77.90) 129.00(±15.30) 69.40(±4.79) 132.00(±11.98) 121.40(±24.77) 65.80(±6.05)
CoCAS 39.71(±4.00) 142.85(±10.81) 77.93(±7.56) 112.87(±7.39) 68.44(±3.89) 119.98(±9.71) 99.80(±9.55) 61.35(±6.85)

Table 2: Results Summary from AV Delivery Service.

(a) (b) (c)

(d) (e) (f)

Figure 6: CAS and CoCAS performance in AV Delivery Service with static (top) and dynamic (bottom) contextual parameters.

Notably, the CoCAS quickly minimizes the incurred cost in both

scenarios, and even in the fixed-context case where the CAS reaches

100% level-optimality in actions taken, the CoCAS is still more

cost-effective in its operation. When the contextual information

varies, where the CAS is unable to sufficiently learn its competence,

its performance is both less cost-effective than the CoCAS and

significantly more noisy. From figures 6c and 6f we see that the

CAS queries the operators at roughly twice the rate as the CoCAS.

6 CONCLUSION
We introduce the CoCAS model for decision-theoretic planning in

the context of multiple levels of autonomy and multiple stochastic

heterogeneous human operators. Although we proved that CoCAS

can capture the SO-SAS model, we emphasize that each the model

has a distinct purpose. The SO-SAS model treats each operator as a

separate-but-equal agent in the system and assumes that there is

a known fixed policy for each operator based on complete knowl-

edge of the domain, leaving the only decision to be which operator

should be active at any given time. In the CoCAS model, there is

a single executor that can utilize human operators as a resource
to achieve their objective. The CoCAS model is particularly rele-

vant in the case where decisions about the level of autonomy (and

consequently transfer-of-control) are made in tandem with the ex-

ecutable action decisions themselves, and in domains where the

agent’s true competence may not be known a priori such as the

CAS model [2].

We present a generalization of the human feedback model defined
in our prior work [2], by integrating contextual information and

stochastic operators into the competence-modeling framework. Al-

though it is outside the scope of this paper, a similar generalization

could be made to the autonomy model, most obviously by extend-

ing constraints on autonomy to depend on contextual information

and the state of the operators. Additionally, natural directions for

future research include extending CoCAS to partially-observable

settings both in the domain model as well as the operator model,

learning the operator model parameters online, and formulating

the fleet-wide human-to-agent matching problem to optimize a

fleet of agents that rely on occasional human assistance.
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