
AN INTROSPECTIVE APPROACH FOR
COMPETENCE-AWARE AUTONOMY

A Dissertation Presented

by

CONNOR BASICH

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

April 2023

Robert and Donna Manning College of
Information and Computer Sciences



© Copyright by Connor Basich 2023

All Rights Reserved



AN INTROSPECTIVE APPROACH FOR
COMPETENCE-AWARE AUTONOMY

A Dissertation Presented

by

CONNOR BASICH

Approved as to style and content by:

Shlomo Zilberstein, Chair

Joydeep Biswas, Member

David D. Jensen, Member

Shannon C. Roberts, Member

Ramesh Sitaramam, Associate Dean for
Educational Programs and Teaching
Robert and Donna Manning College of
Information and Computer Sciences



ACKNOWLEDGEMENTS

The road to completing a PhD is a long one, and one that I would never have

been able to traverse without the help and support of numerous individuals, to whom

I would like to express my sincere gratitude.

There is no one more important in this journey than my advisor, Shlomo Zilber-

stein. He has been a tireless force throughout my years in his lab, supporting me in

every endeavor I undertook, and always working hard to ensure that I had both the

funding and freedom needed to pursue my research passions. He taught me how to

perform research of the highest quality, from inception to publication, and instilled

in me the many insights he had gained throughout his career in the pursuit of con-

tributing meaningfully to the academic community and beyond. There is no better

mentor I could have asked for, and for all of that and more I am extremely grateful.

I would also like to thank the members of my committee who have supported and

pushed me in my effort to complete this dissertation, and who have provided insightful

and encouraging feedback each step of the way. Joydeep Biswas was a constant

source of insight, guidance, and passion for research from my first paper which was,

appropriately, the very seed that would bloom into this dissertation. David Jensen

was one of the most passionate and motivating professors that I had the pleasure

of learning from in my time at UMass, and he shaped the way I approach research

to this day. Shannon Roberts, with whom I was extremely fortunate to collaborate

on my very first project as a PhD student, always provided meaningful insights on

research, and encouraged me to approach problems from new perspectives.

I would like to specially thank Stefan Witwicki who was not only a long-time col-

laborator, but a thoughtful, patient, and caring mentor, who worked hard to provide

iv



the resources necessary to make our collaborations highly successful, and taught me

some of the most important skills I have learned at UMass for applying research ideas

to real-world problems in a meaningful and substantive capacity.

I will never forget my time at the Resource-Bounded Reasoning (RBR) lab. I was

extremely fortunate to work with the most patient, passionate, and helpful senior lab

members in Kyle Wray, Luis Pineda, Sandhya Saisubramanian, and Rick Freedman.

They were my day-to-day mentors for many days, and I have only developed into

the researcher I am thanks to them. Justin Svegliato, Samer Nashed, John Peterson,

Shuwa Miura, Abhinav Bhatia, Saad Mahmud, and Moumita Choudhary were con-

stant, active collaborators, to whom I owe a great deal of my success, as research is

almost never an individual pursuit, nor the result a single person’s efforts.

I would also like to thank my undergraduate advisor, John Shareshian, who first

taught me my love for math and theory, and without whom I would have never even

considered pursuing a PhD, as well as Michele Roberts, the backbone of the RBR

lab whose support and care made my PhD vastly more navigable than it otherwise

would have been.

I have many friends who helped me to create many fond memories and make

the entire PhD experience manageable even when it was at its most difficult: Clau-

dia, Suyash, David, Jay, Ben, Samer, Conrad, Yume, Sam Witty, Sam Baxter, Su

Lin, Tiffany, Katherine, Miguel, and Sophie. From courses, to dungeons and drag-

ons, to trivia nights with bad “toothpaste mojitos”, to bike rides (and crashes!), to

boardgames and cocktails, to Montreal, and the many other joyful times and experi-

ences, I will always be thankful for your friendship.

My parents, Anthony and Mary Basich, have been a constant source of support

and love. I owe many things to them, not the least of which is the opportunity to

have completely a PhD, but my passion for knowledge, and the drive to always be

the best version of myself. My grandmother, Blazenka Basich, who made sure to call

v



me frequently and express steadfast love and encouragement. My siblings, Chase and

Arielle Basich, who helped in so many ways over the years, and always reminded me

of my connection to home with our daily chats. I love you all very much.

And finally, to Maize, my best friend and the best dog in the world, who kept me

healthy, happy, and sane for many years, and to whom I hope that I can do the same.

I dedicate this to you, although you may never understand what it says.

vi



ABSTRACT

AN INTROSPECTIVE APPROACH FOR
COMPETENCE-AWARE AUTONOMY

APRIL 2023

CONNOR BASICH

B.A., WASHINGTON UNIVERSITY IN ST. LOUIS

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Shlomo Zilberstein

Building and deploying autonomous systems in the open world has long been

a goal of both the artificial intelligence (AI) and robotics communities. From au-

tonomous driving, to health care, to office assistance, these systems have the potential

to transform society and alter our everyday lives. The open world, however, presents

numerous challenges that question the typical assumptions made by the models and

frameworks often used in contemporary AI and robotics. Systems in the open world

are faced with an unconstrained and non-stationary environment with a range of het-

erogeneous actors that is too complex to be modeled in its entirety. Moreover, many

of these systems are expected to operate on the order of months or even years. To

more reliably handle these challenges, many autonomous systems deployed in human

environments entail some measure of reliance on human assistance. This reliance on

human assistance is an acknowledgement of a limited competence of the autonomous
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agent to complete its tasks fully autonomously in all situations. Consequently, in

order for such systems to be effective in the open world, they, like humans, must be

aware of their own competence and both capable and incentivized to solicit external

assistance when needed. This thesis therefore proposes planning approaches based on

the concept of competence modeling that equip an autonomous system with knowl-

edge about both its capabilities and limitations to better optimize its autonomy and

operate more effectively in the open world.

In the first part of this thesis, we introduce the notion of competence modeling and

introduce a planning framework called a competence-aware system. A competence-

aware system (CAS) enables a semi-autonomous system to reason about its own

competence in the form of multiple levels of autonomy, and integrate that information

into its decision-making model. We formulate the CAS model in the context of a fully-

observable MDP, but show how it can be extended to the partially-observable setting

in a well-defined manner. The result is a system that is not only more robust to

unforeseen situations, but capable of optimizing its own autonomy online through

interactions with a human operator who can provide varying levels of assistance.

Each subsequent chapter in the dissertation explores relaxing one or more of the

assumptions made in the base formulation of the CAS model, and proposes a tech-

nique or model to address the resultant challenge(s) to improve the applicability of

the CAS model to real-world problems. First, we propose a method for a competence-

aware system to improve its competence over time by exploiting apparent inconsis-

tencies in the existing human feedback to iteratively refine its state representation.

This method, which we call iterative state space refinement, leads to a more nuanced

drawing of the boundaries between regions of the agent’s state-action space with dif-

ferent degrees of competence. The result is a system that can better exploit human

assistance, improving its overall competence. Second, we propose an extension to

the base CAS model called a contextual competence-aware system (CoCAS), which

viii



extends the CAS model to the setting with multiple, heterogeneous human operators

with stochastic states and contextual competence dependence. We show that the

same theoretical guarantees exhibited by a CAS extend to the CoCAS, with strictly

greater representational power. Finally, we propose to extend the learning model,

which is dependent on the assumption that feedback from the human is provided re-

actively for the current state and action of the system, to consider proactive feedback

that is generated by the human conditioned on their inferred behavior of the system

in the near future. We conclude with a summary and discussion of the contributions

presented in the preceding chapters of the thesis.
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CHAPTER 1

INTRODUCTION

Autonomous robotic systems are increasingly being built and deployed in highly

complex and unstructured domains in the “open world” where they are expected

to operate reliably for extended durations while facing challenging problems such

as environmental variability, partial observability, multi-agent interactions, and un-

expected scenarios [63]. These domains range from space exploration [42, 79] to

autonomous underwater vehicles [25, 62, 109] to service robots [50, 75], and to self-

driving cars [20, 21, 33]. Often in such domains, fully enumerating every scenario

that the system can encounter during deployment is infeasible, and the systems must

consequently rely on approximate models of their domains that do not capture the

full space of possible situations in its entirety.

Nevertheless, these systems are expected to maintain safe and reliable operation

throughout their deployment. To enable this, many autonomous systems deployed

in the open world already include some form of reliance on human assistance. These

systems are therefore better described as semi-autonomous systems that can oper-

ate autonomously under certain conditions, but may require human intervention or

assistance in other situations in order to achieve their assigned goals [128]. For ex-

ample, an autonomous car may request that the driver take over in the presence of

unexpected obstacles, or if lane demarcation is lost; a space exploration rover may

suspend operation and wait for a new plan from ground control in the event that

system parameters fall outside some predetermined scope. In each case, the reliance

on human assistance suggests a limitation of the agent’s ability to compete its task
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fully autonomously all of the time, in the same capacity as how humans may also

seek assistance from other humans or external resources when unable to complete a

task by themselves. This thesis, therefore, aims to answer the question: how to best

perform planning for autonomous systems that are aware of both their strengths and

limitations, and which have the ability to seek various forms of external assistance to

better complete their tasks.

To answer this question, this thesis proposes the notion of competence-aware au-

tonomy, a paradigm for enabling semi-autonomous systems to learn and reason about

(1) their limitations in executing a task autonomously, (2) the environmental or situ-

ational factors that influence these limitations, and (3) the proper form and extent of

human assistance to request to optimally compensate for their limitations. We argue

that a semi-autonomous system deployed into the real world should be able to reason,

at any point, about whether it has the requisite competence to act autonomously, and,

if not, reason about the appropriate level of human assistance needed to compensate

for its limited competence. In particular, the robot should aim to not be over-reliant

on human assistance, placing unnecessary burden on the human that may lead to a

higher cost, an over-burdened human, and potentially lower trust in the system and

less willingness to use the system. At the same time, the robot should also aim to not

be under-reliant on human assistance, taking excessive time and energy to perform

what may be a simple, low-cost operation for the human, or worse, attempting what

may be an unsafe operation for the robot. We refer to this notion as competence

modeling.

Competence is generally understood to capture some notion of an individual’s skill,

aptitude, performance, or capabilities [4], and there have been many attempts over the

last several decades to define it in the context of humans. In 1984, the Further Educa-

tion Unit (FEU) defined competence as “the possession and development of sufficient

skills, knowledge, appropriate attitude, and experience for successful performance
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in life roles” [115]. While intuitive, this definition fails to be precise in the mathe-

matical sense. What does “sufficient” entail? How do we define a “skill” or a “life

role”? Many other definitions of competence have been proposed since [35, 101, 111],

but they remain largely atomistic and unwieldy, lacking a well-defined mathematical

representation in their generality.

Gilbert [45] provides a more measurable definition of competence as a function of

the ratio of valuable accomplishments to costly behavior, although the function is left

unspecified. This definition seems to fit well within the AI and robotics sentiment

of efficiency and optimality: the better the outcome and the less the cost needed to

derive said outcome, the more competent the agent is. However, this is arguably closer

to a definition of efficiency or effectiveness, and leaves unaddressed both the relative

performative capabilities of different agents with respect to a given task’s satisfactory

completion (which is an essential component of competence [49]), and the function of

competence as an indication of authoritative permissibility. To derive a new definition

of competence for semi-autonomous systems, we bridge Gilbert’s definition with the

FEU’s definition of competency as “a performance capability needed by workers in a

specified occupational area,” noting that “competency does not imply perfection; it

implies a performance at a stated level” [51].

Hence, in this thesis we propose a formal, well-defined mathematical definition of

the competence of a semi-autonomous system measured as the true optimal extent of

autonomous operation in any situation conditioned on the available human assistance

and feedback. Generally, the more competent the system is, the more that it can do

autonomously, and the less reliance on human assistance it requires. This reliance

on human assistance, however, necessitates well-described limitations on autonomous

operation and explicit modeling of both the human-agent interactions itself, as well

as where and when each is appropriate. Often, this has been represented by a set

of levels of autonomy [107, 81], where each level corresponds to a set of constraints,

3



limitations, or requirements on autonomous operation. In fact, this paradigm has

already taken hold across multiple industrial fields where safety and reliability is

critical in their exploitation of autonomous systems. The Society of Automotive

Engineers (SAE) introduced perhaps the most well known articulation of levels of

autonomy in the context of autonomous vehicles [96], but similar articulations have

recently been presented in other fields such as the medical community [12, 40, 125]

as well as the legal community [36, 37]. Common across these articulations is a clear

progression in the extent of autonomy as the level increases, and the respective extent

of human assistance provided and expected at each level. However, these examples

also illustrate that the mechanisms of interactions, and the language with which they

are articulated, can change with each domain and each implementation.

Several challenging factors must therefore be considered when designing such a

system. The semi-autonomous system should only operate in a fully unsupervised

autonomous capacity (i.e., without any human involvement) when it can be done

safely and reliably, and should otherwise be able to identify the appropriate reliance

on human assistance needed to optimally complete its task within any constraints

imposed on its autonomous behavior. As the human cannot be expected to always

have an intimate knowledge of the semi-autonomous system’s underlying model and

technical specifications, the system should be capable of engendering the appropriate

level of trust from the human over the course of its deployment, which is an important

factor in the level of reliance on the system, particularly in complex or unanticipated

situations [64]. Determining the appropriate level of trust is itself a complex prob-

lem [53, 46] and may depend on several factors such as the relationship of the human

to the system (e.g., designer, tester, consumer, etc.), the opaqueness of the system’s

abilities (e.g., using black-box methods versus more directly interpretable ones), and

the criticality of the domain (e.g., a self-driving car versus a robotic vacuum). The

challenge of precisely determining the appropriate level of trust a priori suggests that
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to be successful in any setting, the system should also have the capacity to update

its own model of how best to interact with the human as the human’s understanding

of the system’s abilities evolves over time. In effect, the system should maintain a

well-defined model of its competence, capable of learning its true competence online

through interactions with the human, and additionally have the means to improve

its competence over time when possible. This suggests that an effective approach to

modeling control of a system with with multiple levels of autonomy, multiple forms of

human assistance, and multiple forms of feedback and communication, is necessary to

efficiently capture the full breadth of problems considered. To this end, we introduce

competence-aware autonomy as a paradigm for enabling a semi-autonomous system

to learn and reason about its competence from interactions with a human operator.

1.1 Related Work

Researchers in automated planning [44] and reinforcement learning [112] have

produced a vast literature devoted to models, languages and algorithms that enable

agents to reason about their environment and choose actions intelligently. In this

work, we specifically focus on advancing proactive reasoning under uncertainty about

when and how to obtain human assistance to improve goal achievement or safety. We

discuss below three areas of research that are particularly relevant to competence-

aware autonomy.

1.1.1 Systems with Variable Levels of Autonomy

Recognizing the value of human knowledge in planning has led to several research

efforts on human-agent collaboration in automated planning and control. Mixed-

initiative planning/control [19, 39, 23, 43] is a paradigm based on mixed-initiative

interaction [1, 56] wherein multiple different agents, generally a human an an au-

tonomous system, can take the initiative to act at different stages to best utilize their
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respective abilities. Recent work has investigated applying mixed-initiative control

in the context of variable autonomy [27] in which the level of autonomy (LoA) can

change dynamically online. Chiou et al. [28] introduced the expert-guided mixed-

initiative control switcher, which dynamically adjusts the level of autonomy based on

a comparison of the expected performance of a task expert and the observed per-

formance of the current system. Petousakis et al. [84] extended this approach by

explicitly modeling the cognitive availability of the human based on real-time vision

of the human to better inform the LoA switching decision between the autonomous

agent and the human. Our work differs from this prior work in several key aspects.

First, we assume that an automated planner determines the level of autonomy for the

human-agent team, thereby designating the workload to both the human and the au-

tonomous agent rather than allowing for each to initiate control on their own. Second,

we are focused on the problem of learning the true competence of the human-agent

system online through the acquisition of feedback from the human in response to ac-

tions taken by the agent at different levels of autonomy. Finally, much of the previous

work is either tied to, or focused on, systems with only two levels of autonomy—no

autonomy and full autonomy—whereas we emphasize a general model for arbitrary

levels of autonomy.

Rigter et al. [90] considered a similar setting in which control of a system is

selected from a set of autonomous controllers and a human operator. To reduce the

reliance on the human over time, they propose to learn one of the controllers online

from demonstrations gained from the human operator. While similarly motivated, we

consider a slightly different problem setting. First, we consider only a single acting

agent operating in different levels of autonomy, each of which may involve some degree

of human assistance, rather than all-or-nothing involvement of the human, and allow

for the level to change at every time step, rather than being fixed throughout an

episode. The idea of learning a controller from human demonstrations is similar to
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how we propose to learn a model of the human’s transition function when they are in

control, but in our case we use it only to predict their behavior, not to learn or alter

autonomous control.

Symbiotic autonomy is similar in that the aim is to enable the completion of

complex tasks by distributing tasks and information across multiple agents. However,

the term has been used both to represent human-agent systems where the two agents

act asynchronously to perform tasks for each other, that is both the human and agent

may seek assistance from the other to complete their task [94, 117, 118], as well as

systems in which there is a smart environment in addition to the autonomous agent

and human that provides auxiliary information to the autonomous agent to facilitate

it [31, 97, 24]. Generally, our work differs in that we do not consider the environment

and we emphasize the use of human assistance to better facilitate the completion of

the autonomous agent’s task, rather than asynchronously acting to help the other

agent with their task.

Adjustable autonomy [78, 34, 102, 103, 17, 116, 127] is a closely related paradigm

for human-agent teams that is characterized by the ability to dynamically change

between different levels, or modes, of autonomy, each of which corresponds to some

set of constraints or allowances that affect the actions the human-agent team can

successfully perform. It is worth noting that these approaches are largely comple-

mentary, and there has been work specifically designed to combine multiple of these

approaches [17, 76]. Our work falls generally in the category of adjustable autonomy,

but adds two important capabilities to such systems, on top of the fundamental no-

tion of competence. First, we explicitly model multiple forms of human feedback and

use this feedback to enable a semi-autonomous system to learn its competence over

time. Second, in the CAS model the system learns a predictive model of the human’s

feedback allowing the system to converge to the optimal level of autonomy over time.
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1.1.2 Learning from Human Feedback

Much of the work in this thesis is highly related to the general area of learn-

ing from human feedback, which is both broad in scope and extensively studied. In

reinforcement learning, some work has investigated the effect of additional informa-

tion provided by a guiding human. Specifically, Chernova and Veloso [26] consider

the inclusion of a guidance period after a robot’s action, which can restrict the set

of actions that the robot can take in the next step to improve the efficiency of the

learning process. Moreira et al. [77] apply this method in the context of deep rein-

forcement learning to expedite the learning process of a deployed system in a new

environment. Similarly, Rosenstein and Barto [93] propose a generalization to the

actor-critic reinforcement learning framework [6] that includes a supervisor who can

provide additional feedback to the system in the form of auxiliary guiding rewards,

action selection guidance, or even direct control of the system. These differ from our

work in that we assume that the agent has access to a well-defined and fully-specified

model of its domain, including the reward (or cost) function from which to compute

an optimal policy, and hence we are not concerned with learning a better world model

online (rather, we are only concerned with learning the system’s competence model

online).

On the other hand, Knox et al. [58, 59] proposed a framework for training a

robot solely from human feedback (sometimes called interactive shaping or interactive

reinforcement learning) in which the human supervising the robot provides real-valued

rewards for the actions that were just taken by the robot in a way that is assumed

to account for the long-term impacts of the action. However, in our work we are

not training the agent to act by learning a reward function, but rather providing the

agent labeled data from which it can compute a distribution that is integrated into an

explicit transition function. Additionally, we do not consider the use of real-valued

feedback from the human, but rather discrete information tokens. More similar to
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our learning setting, Griffith et al. [48] proposed an approach in which the agent

learns two policies in parallel, one derived from reward signals from the environment,

and one derived from “right/wrong” labels from the human to infer what the human

believes is the optimal policy, and then combines the two policies into one that is

used for action exploitation. The key difference from Griffith et al. [48] is that we

seek to learn a predictive model of the human’s feedback rather than what the human

believes the correct policy to be, and then use this predictive model to analytically

determine the optimal policy given the domain model.

Ramakrishnan et al. [88] examined a problem similar to what we consider in

Chapter 4, wherein an autonomous agent trained in simulation may have “blind spots”

when deployed in real-world environments driven by missing or ignoring features that

are important in the real-world. Similar to how our method exploits human feedback

to identify new features that the human is using in generating their feedback, their

method applies imitation learning to demonstrations collected from the human to

identify features used by the human but not by the agent. Our work differs primarily

in the type of information that the human provides to the system as well as how

the missing features are used. We integrate the missing features into the existing

model to improve the accuracy of the predicted human feedback, which consequently

improves the quality of the overall policies generated by the system. On the other

hand, [88] use the learned information to learn blind spot models in the real world to

perform safe transfer-of-control to a human when encountering a blind spot to avoid

potentially dangerous situations.

Bajcsy et al. [5] introduced a methodology in which a robot can learn an objective

parameterized by a set of features via physical corrections made by a human super-

visor, focusing on learning one feature at a time to reduce unintended learning from

the human’s interventions. Li et al. [65] and Liu et al. [67] both consider human-in-

the-loop IRL settings in which an agent learns via reward signals generated by the
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environment to act in its domain while being constantly supervised by human oper-

ators who are ready and capable of intervening and taking control when the agent

attempts something risky, providing a subsequent demonstration trajectory.

Constraint inference and learning from human feedback has also been of great in-

terest in the robotics community, as it is generally easier to infer a set of constraints

on allowable behavior from feedback that dictates what the agent can’t do, rather

than attempting to learn an explicit reward function that best explains the observed

human feedback or even an entire policy. Additionally, constraints are often shared

across many tasks and environments within a domain, which is useful for generaliza-

tion [29]. Scobee and Sastry [105] present a method for maximum likelihood constraint

inference in an inverse reinforcement learning setting that iteratively infers the con-

straints that best explain behavior observed in human demonstrations. Their work

focused on purely deterministic systems, but was later extended to non-deterministic

systems [73] and continuous, model-free settings [70]. Papadimitriou et al. [80] intro-

duced a Bayesian constraint inference method based on human demonstrations that,

unlike maximum likelihood methods, is able to work with both partial trajectories and

sets of disjoint state-action pairs, in addition to the full demonstration trajectories

used in maximum likelihood inference.

To the best of our knowledge, the work we present in Chapter 6 is the first to

explicitly study both the problem of learning constraints from interventions specifi-

cally, as well as learning from proactive feedback. Here, we use the term intervention

to indicate any discrete instance where a human intervenes in the agent’s execution

and brings the agent to a new state. Spencer et al. [110] considered a similar problem

in their expert intervention learning framework, which leveraged demonstrations that

were generated during interventions gated by a human supervisor’s decision to learn

a portion of the state-action space that is deemed to be “good enough” to operate

within. The agent’s objective is consequently to minimize the time spent outside of
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the “good enough” region while simultaneously minimizing misclassification of inter-

vention actions. However, their approach still relies on partial trajectories of human

behavior and assumes non-proactive interventions.

1.1.3 Competence Modeling

The term competence has been used widely in the context of intelligent systems.

The classification literature, in particular, has often defined the term as some mea-

sure of performance based on standard metrics for classification systems on their in-

put space [61], including accuracy estimation [122], potential function estimates [89],

Bayes-based confidence measures [55], relative performance to random guessing or

otherwise randomized classifiers [119], and probabilistic models [68, 120, 121]. More

recently, Platanios et al. [85] defined the competence of a curriculum learner to be the

proportion of training data that the learner is allowed to use at any given time based

on the difficulty of training samples, and Rabiee et al. [87] proposed competence as

a distribution over failure classes that is learned via introspective perception in the

context of robotic path-planning. Common across these examples is an evaluative ap-

proach to defining competence; that is, competence is a measure of the performance

of a system or algorithm. Most closely related to the formalization of competence

presented in this thesis was suggested by Smyth and McKenna [108] who defined the

competence of a case-based reasoning (CBR) system as the set of problems that the

system can solve successfully. The authors provide a rigorous model and analysis

of competence for CBR systems, but the work is highly specific to CBR systems on

non-probabilistic domains, and consequently does not apply to stochastic decision-

making processes considered in this work. Rather, we aim to enable a system to

handle all problems by utilizing the appropriate level of human assistance to ensure

safe operation.
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1.2 Summary of Contributions

The main objective of this thesis is to enable semi-autonomous systems to operate

more reliably in the open world by explicitly accounting for violations of common

assumptions made in contemporary planning models. We first introduce the primary

planning model used in our competence-aware autonomy paradigm, the competence-

aware system (CAS) in Chapter 3, as a solution for handling problems where a system

will be faced with unexpected scenarios during deployment, and is initially unaware of

what it can handle safely and reliably. We propose the model initially in the context of

full state observability, but later generalize the model to partially-observable domains

as well, and define a mathematically precise notion of competence for such systems

based on levels of autonomy. Additionally, we provide both a theoretical analysis

of the convergence properties of a competence-aware system in addition to rigorous

empirical evaluations of its performance in simulation.

In each subsequent chapter of the thesis, we explore the challenge(s) that arise

from relaxing one or more assumption made in the base formulation, and propose

a novel model or method as a solution. In Chapter 4, we present a method called

iterative state space refinement that enables a CAS to identify from emergent incon-

sistencies in the human’s feedback features missing from its initial model, to handle

scenarios where it is impossible to know a priori all features relevant to the human’s

decision-making. We prove that, when possible, our method will find all such missing

features and reach a point where the human’s feedback is well-discriminated every-

where. Chapter 5 proposes a generalization of the CAS model called a contextual

CAS (CoCAS) that relaxes the assumption of a single, invariant human operator,

to allow for multiple, heterogeneous, stochastic human operators where competence

may be conditioned on additional contextual parameters of the domain. We prove

that this model strictly generalizes both the CAS model, and the recently proposed

SO-SAS model [32], but still retains the same convergence guarantees of the base
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CAS model, and performs the best empirically across several metrics. Finally, Chap-

ter 6 proposes a methodology for learning constraints from human feedback that is

temporally conditioned on the inferred future behavior of the system by the human,

rather than on the current state and action as is often assumed in the the learning

from feedback literature. We empirically demonstrate the benefits of the proactive

learning approach in two domains wherein the proactive learning model significantly

outperforms the reactive model, and prove that the optimal policy under the learned

constraint model will be at most a constant factor worse than the optimal policy un-

der the true constraint model in finite-horizon problems. Finally, we offer concluding

thoughts on the use, advantages, and limitations of competence-aware autonomy, and

the important avenues for future work that remain.

Competence-Aware Systems

In the open world, complete a priori determination of the competence of a human-

agent system, and the respective capabilities of each actor in the system, is generally

either impractical or impossible to do across all situations that the system may en-

counter. As a result, the system’s initial policy is likely to be either over-reliant

or under-reliant on the human in many circumstances. Without an ability to learn

and adjust the appropriate level of autonomy of a deployed system in a safe way, the

chance of failure and the resources wasted will grow over time. In expensive or safety-

critical domains such as autonomous driving and space exploration, the resultant cost

can be very high. Consequently, developing formal mechanisms to explicitly repre-

sent, reason about, and optimize the autonomy of a system is an important challenge

in artificial intelligence. To address this issue, we introduced a formal model called

competence-aware systems (CAS) for optimizing autonomy in semi-autonomous sys-

tems over time by learning to optimally leverage the available human assistance. CAS

is a decision making framework for semi-autonomous systems where systems can oper-
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ate at multiple levels of autonomy, each of which corresponds to different constraints

on autonomous operation and their commensurate levels of human assistance, each

associated with a set of unique feedback signals. By learning from these feedback sig-

nals, the CAS can quickly grow to operate at its competence when feasible, effectively

optimizing its autonomous operation by minimizing unnecessary reliance on human

intervention while relying on the human when optimal to do so.

Improving Competence with Iterative State Space Refinement

Like many fixed planning models, a competence-aware system is limited in what

it can learn and represent by its initial fixed model. In practice, particularly when the

human agent in the system is not a designer of the system, it is likely that there will

be divergence between the autonomous agent’s model of the world and the human’s

model of the world. The result is that feedback provided by the human may appear

noisy or random to the agent, which may not have the representational capability of

distinguishing the feedback appropriately. This phenomenon can lead to low compe-

tence and inefficient operation, causing a decrease in the human’s trust of the agent’s

capabilities. To address this, we propose a method called iterative state space refine-

ment that enables the competence-aware system to refine the granularity of its state

representation through online model updates. This process produces a more nuanced

partitioning of the state-action space with different levels of competence, allowing the

system to better learn and act at its true competence.

Contextual Competence-Aware System

The standard CAS model assumes that there a single, invariant human with per-

fectly consistent feedback. However, in many real-world domains, that assumption

may be unreasonable; there may, for instance, be multiple human operators inter-

acting with the autonomous agents, each may have their own unique set of skills

or preferences, and their performance and internal state may vary stochastically de-
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pendent on contextual variables like the time of day. These may in turn affect the

competence of the overall human-agent system. To account for this, we propose a

generalization of the CAS model called a contextual CAS (CoCAS), which can operate

in multiple levels of autonomy and is capable of optimizing its autonomy with respect

to global contextual information about the world, and local contextual information

about each stochastic, heterogeneous operator.

Learning Constraints on Autonomy from Proactive Feedback

Both in our approach to learning competence from human feedback, and the gen-

eral literature on learning from human interventions, it is often assumed that feedback

is provided reactively by the human, i.e., for the current or previously executed state-

action pair of the system. However, evidence in human cognitive control suggests

that human’s often act proactively when trying to ameliorate anticipated goal inter-

ference prior to occurrence. Consequently, in this chapter we propose a novel learning

methodology for learning from proactive interventions, where the human’s feedback

is not reactively generated for the system’s current state-action pair, but instead for

inferred potential autonomy constraint violations in the projected near-term future.

We show that our approach makes minimal assumptions about the human, but still

enables the system to learn a model of autonomy constraints from proactively gener-

ated human feedback in the form of sparse interventions.

1.2.1 Relevant Publications

• C. Basich, J. Svegliato, K. H. Wray, S. Witwicki, J. Biswas, and S. Zilberstein.
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of the 19th International Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS). 2020.
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CHAPTER 2

BACKGROUND

In this chapter we provide as background the formal definition and representation

of several key planning models for stochastic sequential decision making. Figure 2.1

illustrates the traditional methodological view of robotic control, and while the models

discussed in this chapter all fall within the “planning” component of the architecture,

we emphasize that – as illustrated – planning does not exist in a vacuum. In particular,

the motivation and formalism of key planning models arise directly from limitations

of, or considerations for, the other components.

Common to all models for sequential decision making is a formal representation

of (1) the states and their features that describe the domain or environment, (2) the

actions that the agent operating in the domain can execute, (3) the dynamics of how

the world evolves by itself or in response to the actions performed by the agent, and

(4) the dynamics of how the agent is rewarded or penalized for the actions that it

executes and how the world changes around it.

While there are numerous models for sequential decision making, we focus our

background section on only those used explicitly throughout the course of this thesis

as the basis of one or more contribution. Our focus is on models that can represent

stochastic domains, where each action performed by the agent may probabilistically

lead to more than one successor state. In particular, we provide background on (1) two

fully observable, single-objective models – the Markov decision process (MDP) and

the stochastic shortest path problem (SSP) – in which at all times, the agent is aware

of exactly what state it is in and the exact values of all current state features, and
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Figure 2.1: The traditional robot-control methodology, adjusted for contemporary
separation of “sensing” and “perception”.

the system only seeks to optimize a single objective function; (2) two fully-observable,

multi-objective models – the multi-objective Markov decision process (MOMDP) and

the lexicographic Markov decision process (LMDP) – which extend the MDP to sit-

uations where the agent must optimize over more than one objective functions in

different ways; and (3) two models for partially-observable, single-objective domains

– the partially-observable Markov decision process (POMDP) and belief-state Markov

decision process (bMDP) – in which the agent may have limited knowledge of what

state it is in at any given time and the true features of that state.

2.1 Fully-Observable, Single-Objective Planning

Fully-observable, single-objective models represent the simplest class of stochastic

decision making models used in this thesis, and are widely-used due to their flexibility,

computational tractability, and guarantees on solution optimality.

2.1.1 Markov Decision Process

A Markov decision processes (MDP) is a formal model for sequential decision

making in fully observable, stochastic environment, and provides the foundation of

all of the decision-making models used in this thesis. Many of these models exist to

handle problems where one or more assumption made in formulating a problem as an

MDP (e.g., full state observability) does not hold; however, MDPs have been shown

to be effective in a wide array of domains [38].
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Definition 1. A Markov decision process (MDP) is represented by the tuple:

⟨S,A, T,R, γ⟩ where

• S is a finite set of states,

• A is a finite set of actions,

• T : S × A × S → [0, 1] is a transition function representing the probability of

arriving in state s′ ∈ S having taken action a ∈ A in state s ∈ S,

• R : S × A → R is a reward function representing the myopic utility of taking

action a ∈ A in state s ∈ S, and

• γ is a discount factor that represents the discounted value of future rewards.

An MDP is a discrete-time control process where, at each time step the system

performs an action a ∈ A in state s ∈ S, receives the immediate myopic reward

R(s, a), and then transitions to a new state s′ ∈ S drawn according to T (s, a, s′).

An MDP can be either finite-horizon, in which case the process reaches until exactly

h ∈ N time steps are reached at which point the process terminates, infinite-horizon,

wherein the process continues ad infinitum, or indefinite-horizon, in which case there

is a finite horizon h ∈ N, but h is not known ahead of time.

A solution to an MDP is a mapping from states to actions, π : S → A, called a

policy, and we denote by Π the space of all policies. In an infinite horizon MDP,

the objective is to find the policy π ∈ Π that maximizes the expected reward over all

states for all time, discounted by γ ∈ [0, 1):

E
[ ∞∑

t=0

γtR(st, π(st))|π
]

(2.1)
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where st denotes the random variable for the state of the system at time step t fol-

lowing the transition function T . Any valid policy π induces the state–value function

V π : S → R using the Bellman equation

V π(s) = R(s, π(s)) + γ
∑
s′∈S

T (s, π(s), s′)V π(s′) (2.2)

that represents the expected cumulative discounted reward V π(s) when starting in

state s following the policy π. Similarly, π induces the action–value function qπ :

S × A→ R

qπ(s, a) = R(s, a) +
∑
s′∈S

T (s, a, s′)V π(s′) (2.3)

that represents the expected cumulative discounted reward when the action a ∈ A is

taken in state s ∈ S, and the policy π is thenceforth.

Any policy that maximizes these functions is referred to as an optimal policy and

denoted π∗; formally:

π∗ := argmax
π∈Π

V π (2.4)

Without loss of generality we may assume the optimal policy is unique unless

explicitly stated otherwise. Given π∗, we can define the optimal state–value function

following policy π∗ using the Bellman optimality equation as follows:

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

(2.5)

= max
a∈A

q∗(s, a), (2.6)

where q∗ is the action–value function under the policy π∗. Usefully, then, we can

intuitively map π∗(s) = argmaxa∈A q∗(s, a). Any policy that is independent of time is

called a stationary policy, and it is known that infinite-horizon MDPs admit at least

one optimal stationary policy [15]. It is often convenient for infinite-horizon problems
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to include states that have the property that T (s, a, s) = 1.0 for every a ∈ A; these

are referred to as terminal absorbing states.

For a finite-horizon MDP, there exists some known horizon h ∈ N where the

objective becomes to find the policy π ∈ Π maximizing the expected reward over all

states within the horizon h, discounted by γ ∈ [0, 1]:

E
[ h∑

t=0

γtR(st, π(st))|π
]
. (2.7)

Unlike in the infinite-horizon case, policies in the finite-horizon setting can be

non-stationary, inducing the time-dependent state-value function V π : S × [h]→ R:

V π(s, t) = R((s, t), π(s, t)) +
∑
s′∈S

T ((s, t), π(s, t), (s′, t+ 1))V π(s′, t+ 1) (2.8)

where V π(s, h) = 0 for every s ∈ S.

2.1.2 Stochastic Shortest Path Problem

A stochastic shortest path problem (SSP) is a specific case of a Markov

decision process that, while similar, is often more intuitive particularly when dealing

with problems like navigation or task completion. An SSP is an MDP with a specified

start state and (possibly singleton) set of goal states, where the objective is to reach

any goal state from the start state while incurring the least cost possible. This is

in contrast to an MDP, which has no notion of start or goal states, and in which

an agent is seeking to maximize some reward. An SSP is always undiscounted and

indefinite-horizon.

Definition 2. An SSP is formally represented by the tuple: ⟨S,A, T,R, s0, G⟩ where:

• S is a finite set of states.

• A is a finite set of actions.
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• T : S × A × S → [0, 1] is a transition function representing the probability of

arriving in state s′ ∈ S having taken action a ∈ A in state s ∈ S.

• C : S × A → R+ is a positive cost function representing the myopic cost of

taking action a ∈ A in state s ∈ S.

• s0 ∈ S is the start state.

• G ⊂ S is the set of goal states.

As with an MDP, a solution to an SSP is a policy π : S → A that indicates that

action π(s) ∈ A should be taken in state s ∈ S, where the objective is to find the

policy π ∈ Π that minimizes the cumulative cost incurred when starting in state s0:

E
[ ∞∑

t=0

γtC(st, π(st))|π, s0
]
. (2.9)

However, the existence of an optimal solution to the SSP is guaranteed only under

the condition that there exists a proper policy, i.e., a policy under which a goal state

is reachable from all states with probability 1, and that all improper policies generate

infinite cost when starting from at least one state; under this assumption, the optimal

value function is also unique.

A policy π induces the state–value function V π : S → R

V π(s) = C(s, π(s)) +
∑
s′∈S

T (s, π(s), s′)V π(s′), (2.10)

which represents the expected cumulative cost of reaching any sg ∈ G from state

s ∈ S following the policy π.

Naturally, there exists a similar action–value function, qπ : S × A→ R
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qπ(s, a) = C(s, a) +
∑
s′∈S

T (s, a, s′)V π(s′), (2.11)

which represents the expected cumulative cost of reaching any sg ∈ G from state s ∈ S

given that the action a ∈ A was taken and the policy π was followed thenceforth. Any

policy that minimizes these functions is referred to as an optimal policy and denoted

π∗; formally:

π∗ := argmin
π∈Π

V π(s0) (2.12)

Without loss of generality we may assume the optimal policy is unique unless

explicitly stated otherwise. Given pi∗, we can define the optimal state–value function

following policy π∗ using the bellman optimality equation as follows

V ∗(s) = min
a∈A

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

(2.13)

= min
a∈A

q∗(s, a) (2.14)

where q∗ is the action–value function under the policy π∗.

2.2 Fully-Observable, Multi-Objective Planning

Although MDPs and SSPs have been used in a wide variety of domains, not all

domains can be captured easily, or at all, through the use of a single objective function.

For example, in a self-driving car, one may reasonably consider that minimizing the

cumulative time to reach a destination is the primary objective to optimize when

driving; however, other objectives such as maximizing safety, complying with the

legalities of surface driving, and behaving in a socially-acceptable manner are all

important factors that a successful system must reason about when determining its

behavior. Consequently many systems need to solve for policies that optimize their

performance across multiple competing objectives.
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2.2.1 Multi-Objective Markov Decision Process

A multi-objective Markov decision process (MOMDP) is a formal model for se-

quential decision making in fully-observable environments where the agent’s behavior

is dictated by multiple competing objectives which each induce a unique reward (or

cost) function. In a MOMDP, the objective of the agent is to find the policy that

maximizes the cumulative value over all objectives according to a given weighting

scheme.

Definition 3. A MOMDP is formally represented by the tuple ⟨S,A, T,R, fw, γ⟩,

where:

• S is a finite set of states.

• A is a finite set of actions.

• T : S × A × A → [0, 1] is a transition function representing the probability of

arriving in state s′ ∈ S having taken action a ∈ A in state s ∈ S.

• R = [R1 · · ·Rk]
T is a vector of reward functions, Ri : S × A→ R.

• fw : Rk → R is a weighting function parameterized by a k-length vector w.

A MOMDP operates analogously to a traditional MDP, and the objective remains

to find the policy that maximizes the expected rewards over all states:

E
[ ∞∑

t=0

γtfwR(st, π(st))|π
]

(2.15)

and

E
[ h∑

t=0

γtfwR(st, π(st))|π
]

(2.16)

for the infinite, and finite cases respectively.

As in an MDP, the solution to a MOMDP is a policy π : S → A that induces a

value function, however in a MOMDP the weighting function is used to produce a
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single value function of the form V π
w(s) = fw(V

π(s)) where Vπ = [V π
1 (s) · · ·V π

k (s)]

is the vector of value functions computed as in an MDP under the policy π ∈ Π for

each of the k objectives. We specifically consider only the common linear scalarization

weighting method in which fw(V
π(s) = wTVπ(s), where each weight element wi ∈ w

is a positive real number, and w sums to 1.

2.2.2 Lexicographic Markov Decision Process

A lexicographic Markov decision process (LMDP) is similar to the MOMDP in

that it aims to optimize performance across multiple different objectives. However,

in an LMDP, objectives are defined in a strict lexicographic ordering, where any value

in a given objective is weighted more heavily than any value in a different objective

lower in the ordering.

Definition 4. An LMDP is formally represented by the tuple ⟨S,A, T,R,∆, o⟩ where:

• S is a finite set of states.

• A is a finite set of actions.

• T : S × A × A → [0, 1] is a transition function representing the probability of

arriving in state s′ ∈ S having taken action a ∈ A in state s ∈ S.

• R = [R1 · · ·Rk]
T is a vector of reward functions, Ri : S × A→ R.

• ∆ = ⟨δ1, ..., δk−1⟩ is a tuple of slack variables with each δi ∈ R+ for every

i ∈ [k − 1].

• o = ⟨o1, ..., ok⟩ is a strict ordering over the k objectives.

As above, a solution to an LMDP is a policy π : S →; however, due to the

lexicographic ordering over objectives, there is no close-form value function repre-

sentation to solve for. Instead, solving an LMDP involves sequentially optimizing
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for each objective oi+1 given a solution to objective oi and slack value δi, denoting

the maximum allowable deviation from the optimal expected reward for objective oi

when objectives lower in the lexicographic order. This can be done by constrain-

ing the available actions when solving for objective oi+1 by setting Ai+1(s) = {a ∈

A|maxa′∈Ai
Qi(s, a

′)−Qi(s, a) ≤ γi} [123].

2.3 Partially-Observable, Single-Objective Planning

The earlier models presented all rely on the assumption of full state observability;

that is, at every time step, the system fully, and exactly, knows its current state.

This is a useful assumption because it (1) applies in many domains of interest and (2)

makes the decision-making problem tractable to solve. Unfortunately, many systems

in the open world, such as robots that rely on sensor data to infer their state, do not

exhibit this property, and assuming that it holds can lead to poor, or even dangerous,

performance. Instead, the system may need to reason over what state it may be

in at any given time given partial information about its state in the form of noisy

observations, and act according to this belief over its current state.

2.3.1 Partially Observable Markov Decision Process

A partially observable Markov decision process, or POMDP, is a formal model

for sequential decision making in partially observable, stochastic environments. In

other words, a POMDP is an MDP where there is uncertainty over what state the

agent is actually in. In a POMDP, rather than observing the full state of the world

directly, the system receives state information in the form of observations, which may

provide only partial information about the current state of the world. Based on these

observations, the system determine what the state of the world might be and act

accordingly.
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Definition 5. A POMDP is formally represented by the tuple ⟨S,A,Ω, T, R,O, γ⟩

where:

• S is a finite set of states.

• A is a finite set of actions.

• Ω is a finite set of observations.

• T : S × A × S → [0, 1] is a transition function representing the probability of

arriving in state s′ ∈ S having taken action a ∈ A in state s ∈ S.

• R : S × A → R is a reward function representing the myopic reward of taking

action a ∈ A in state s ∈ S.

• O : A × S → ∆|Ω| is an observation function representing the likelihood over

observations given that action a ∈ A was taken and the agent ended up in state

s ∈ S.

• γ ∈ [0, 1] is a discount factor.

As in an MDP, a POMDP can either be finite-horizon, infinite-horizon, or indefi-

nite horizon, for horizon h, and at each time step t ≥ 0 the system performs an action

at ∈ A in state st ∈ S. However, the system does not know its current state, and

consequently must instead infer its true state from the history of its behavior and ob-

servations ⟨s0, a0, ω1, ...an−1, ωn⟩. This history can be expressed as a belief state, which

is a probability distribution over states; i.e., if we define B to be the |S|–dimensional

simplex, ∆|S|, then a belief state b is any point in B. We use the notation b(s) to

represent the belief of being in state s ∈ S under the belief state b ∈ B. A belief

state can be computed directly from the actions and observations taken by the agent,

given that it knows what state it started in. Formally, after executing action a ∈ A

and observing observation ω ∈ Ω, the agent updates its belief state b ∈ B to some

27



Figure 2.2: A illustration of the difference between a fully observable MDP (left) and
a partially observable MDP (right). In an MDP, the agent receives the true state (s)
of the world at each time step and acts directly on that. In a POMDP, the agent
receives an observation, ω, about its state in the world, enabling it to compute its
belief over which state it is in and act accordingly.

new belief state b′ ∈ B using the following belief–state update equation for every

state s′ ∈ S:

b′(s′|b, a, ω) = ηO(ω|a, s′)
∑
s∈S

T (s, a, s′)b(s) (2.17)

where η = 1
Pr(ω|b,s′) is a normalizing constant.

In a POMDP, a policy, π : B → A, maps belief-states to actions. In an infinite-

horizon POMDP, the objective is to find the policy π ∈ Π that maximizes the expected

reward over all belief-states over all time with discount γ ∈ [0, 1):

E
[ ∞∑

t=0

γtR(bt, π(bt))|π, b0
]

(2.18)

where bt denotes the random variable for the belief-state of the system at time step t

following the transition function T and observation function O, and starting in belief

state b0, and R(b, a) =
∑

s∈S b(s)R(s, a). Similarly, for a finite-horizon POMDP with

horizon h ∈ N and discount factor γ ∈ [0, 1], we seek to find the policy maximizing

the cumulative reward over all states within the h time steps:

E
[ h∑

t=0

γtR(bt, π(bt))|π, b0
]

(2.19)
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However, it is often convenient to map POMDPs to another model, called a belief-state

MDP, as discussed below, when solving for the optimal policy. Note that, partial-

observability conditions have also been applied to SSPs in a similar capacity [82].

2.3.2 Belief-State Markov Decision Processes

Every POMDP can be equivalently expressed as a belief-state MDP, which is

a Markov decision process where the states are replaced by the belief state space B

that is expressed above, and where the action set remains the same.

Definition 6. G a POMDP ⟨S,A,Ω, T, R,O, γ⟩, the corresponding belief-state MDP

is represented by the tuple ⟨B,A, τ, r, γ⟩ where:

• B = ∆|S| is the set of belief states created from the POMDP.

• A is the finite set of actions from the POMDP.

• τ : B × A × B → [0, 1] is the belief state transition function representing

the probability of reaching the belief b′ ∈ B after taking the action a ∈ A is

performed in belief state b ∈ B.

• r : B × A → R is the belief state reward function representing the myopic

reward for taking action a in belief state b ∈ B.

• γ ∈ [0, 1] is a discount factor.

When the state and observation spaces in the original POMDP are discrete, we

can define the belief-state transition function, τ , as follows:

τ(b, a, b′) =
∑
ω∈Ω

Pr(b′|b, a, ω)
∑
s′∈S

O(ω|a, s′)
∑
s∈S

T (s, a, s′)b(s) (2.20)
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Here, Pr(b′|b, a, ω) is computed using the belief update rule discussed above. We can

define the belief-state reward function as well, to simply be the expected reward over

the belief states:

r(b, a) =
∑
s∈S

b(s)R(s, a) (2.21)

Given a belief-state MDP, we can define the optimal state-value function, V ∗ :

B → R as follows:

V ∗(b) = max
a∈A

[
r(s, a) + γ

∑
ω∈Ω

Pr(ω|b, a)V ∗(update(b, a, ω))
]

(2.22)

where update(b, a, ω) represents the belief state, b′, that is achieved by applying the

belief update equation (Eq. 2.17) over all states s, given the belief state b, action a

and observation ω.

Given a belief-state MDP, we can define the optimal action-value function, q∗ :

B × A→ R as follows:

q∗(b, a) = r(s, a) + γ
∑
ω∈Ω

Pr(ω|b, a)V ∗(update(b, a, ω)) (2.23)

Finally we can define the optimal policy, π∗ : B → A, as follows:

π∗(b) = argmax
a∈A

q∗(b, a) (2.24)

Naturally, the belief-state MDP extends in the analogous fashion for partially-observable

SSPs (sometimes referred to as Goal POMDPs) [16].
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2.4 Conclusion

In this chapter, we present the core decision-making models that are used through-

out the remainder of this thesis, each of which is a specific type, or generalization

of, the traditional Markov decision process. Each model has different strengths and

weaknesses, often trading computational tractability for model or objective expres-

sivity, meaning that no one model fits all problems, and selecting the appropriate

model for the setting is a critical aspect creating successful autonomous systems in

the open world.
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CHAPTER 3

COMPETENCE-AWARE SYSTEMS

As discussed in Chapter 1, the vast majority of autonomous systems under devel-

opment are in fact semi-autonomous systems (SAS) that can operate autonomously

under certain conditions, but may require human intervention or aid to ensure that

they achieve their assigned goals [128]. For example, a space exploration rover may

suspend operation and wait for a new plan from the command center when its wheel

encounters unexpected resistance; an autonomous car may request that the driver

take over when an unexpected obstacle blocks its path requiring it to drive into the

oncoming traffic’s lane to circumvent. Human assistance could come in different forms

that correspond to different limitations of the autonomous system; e.g., allowing a

system to operate autonomously under human supervision may indicate a higher level

of competence relative to a system that must first present its plan and get approval

for every action before the action is executed.

Reliance on human assistance has been explored extensively to address the lim-

ited competence of autonomous systems [39, 97, 118, 43, 54, 78, 84]. Often, this has

been explored in the context of varying levels of autonomy, a paradigm for model-

ing gradations in autonomous behavior within a human-agent team [107, 81], where

each level of autonomy corresponds to some set of constraints, limitations, or require-

ments on autonomous operation. For example, on the two extremes would be full

autonomous operation, and full human control (no autonomy). Levels of autonomy

have been proposed in several industrial applications where safety and reliability are
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critical, including driving automation [96], robotic medical devices [12, 40, 125], and

autonomous legal reasoning [36, 37].

Human assistance may be available in different forms or modalities, corresponding

to different degrees of competence of a semi-autonomous system. Different forms of

human assistance compensate for the limitations imposed in each level of autonomy

and consequently mitigate the potential for risky behavior, while still ensuring that

the system’s task is completed. For example, Veloso et al. [117, 118] designed the

CoBot system that can aid humans in an office environment as an assistive robot

in a variety of pick-up and delivery tasks. However, as the CoBot has no arms to

grasp objects, it cannot perform its tasks entirely autonomously, and must instead

seek assistance from humans to compensate for its limitation, for example by placing

or removing objects in its basket. Ficuciello et al. [40] proposed a level of autonomy

framework for a surgical assistive medical robot with four levels of autonomy, where

the lowest two involve purely assistive actions to aid the human who is the primary

executor, and the highest two involve fully autonomous execution by the robot with

assistance from the human in the form of surgical strategy selection.

In this dissertation, we are primarily concerned with the risk associated with a

system that operates at a level of autonomy that is inappropriate for a task given its

capabilities; for instance, an office robot that autonomously handles fragile items it

is not competent to handle safely (i.e., without a high risk of breaking). Hence, we

aim to develop systems that are aware of their own competence, which we define to

be the optimal level of autonomy to employ in any given situation conditioned on the

availability of suitable human assistance. A system that is aware of its own compe-

tence when generating plans can therefore mitigate the potential for risky behavior

by optimizing the degree of human assistance that it requests, leveraging the human

where the system’s competence is low, and acting autonomously where it is high.
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To further mitigate risks, humans may impose constraints on autonomous opera-

tion based on the perceived competence of the system, for instance, by allowing them

to intervene in time to prevent risky behavior or by disallowing autonomous behavior

entirely. In fact, the perceived risks may be outside the scope of what the autonomous

system can detect or reason about, hence enabling us to mitigate a broader range of

risks. For example, a robot’s sensors may be unable to perceive black ice on a side-

walk, or a nearby obstacle in dense fog, leading to risky behavior if left to operate

without supervision in these conditions.

Determining the exact competence of an autonomous system at design time can

be very difficult, particularly when the environment is not fully specified, or is simply

too complex to fully anticipate, a priori. For example, a self-driving car may ini-

tially be authorized to drive autonomously without supervision only on highways and

during the daytime with clear weather. Hence, an initial level of autonomy may be

determined a priori through testing and evaluation, but adjustments must be made

when the system is deployed. Even when developers aim to err on the side of cau-

tion, initializing the level of autonomy to be below the system’s true competence,

it is possible to unintentionally infer from initial testing that the system is more

competent than it really is [113, 86]. Therefore, developing mechanisms to explicitly

represent, reason about, and adjust the level of autonomy is critical for the success

of autonomous systems deployed in the open world.

We propose a planning model called competence-aware system (CAS) for operating

at multiple levels of autonomy where each level is associated with different forms of

human assistance that compensate for the constrained abilities of the system [7, 10,

11]. Motivated by ideas from collaborative control [41], the structure of a CAS is

illustrated in Figure 3.1. The model associates with each type of human assistance

a set of feedback signals that the system can receive from the human, the likelihood

of which can be learned over time. This model enables the system to operate more
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Figure 3.1: An overview of how competence modeling impacts plan execution. Here,
the system’s current state is provided as input to the system’s policy, which tradition-
ally would only output an action, but in our case also outputs a level of autonomy
determined by the competence model in which to perform the action. The level of
autonomy dictates the type and degree of human assistance used in the execution of
the intended action. The human assistance can also provide additional feedback to
the system, which can be used to update and refine the competence model online.

reliably in the open world, reduce improper reliance on the human and ultimately

optimize the autonomous behavior of the system. To address situations where the

initial domain model has insufficient information to correctly model human feedback,

we introduce an iterative approach in Chapter 4 to refine the system’s state space in

order to better discriminate human feedback, producing a more nuanced partitioning

of the state-action space with different levels of competence, and allowing the system

to better learn and act at its true competence.

One of the main characteristics of CAS is that the system must recognize the limits

on its autonomy, but it is not required to know the reasons for these restrictions. This

could be seen as a limitation, but we argue that it is an advantage because it allows

us to build autonomous systems that respect constraints on autonomy derived from

human knowledge that is beyond the scope of the system’s reasoning abilities. While

we allow for situations in which the system does not have complete knowledge of

the risks that justify the limitations on its autonomy, the system may acquire that

knowledge over time through interactions with the human.

Our contributions in this chapter are thus (1) a mathematically rigorous formal-

ization of competence for automated decision making; and (2) a planning framework
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for a competence-aware system that integrates a model of competence with a planning

model to enable the system to reduce unnecessary reliance on humans and optimize its

autonomous behavior. We provide a theoretical analysis of our model and algorithm,

a concrete example of a CAS and considerations in its design and implementation,

and empirical evaluations of our model in simulation.

3.1 Competence-Aware Systems

We start with a description of a general competence-aware system that can operate

in and plan for multiple levels of autonomy. Each level of autonomy is defined by a

unique set of constraints on autonomous operation and consists of different forms of

human feedback that can be provided to the autonomous agent. To enable the agent

to reason about its own competence, we integrate information from three different

models: a domain model, an autonomy model, and a feedback model. Throughout

this section, we use the problem setting in Example 1 as a running example to better

illustrate the concepts and terminology that we introduce throughout the chapter.

Example 1. An autonomous vehicle (AV) with a human driver (shown in blue in

Figure 3.2) encounters an obstruction (e.g., a parked truck) blocking its lane on a one-

lane road (red). To overtake the obstruction, the AV would need to drive around the

obstruction necessarily driving through the oncoming traffic’s lane. In the oncoming

lane, there may or may not be a vehicle (yellow), but while stopped behind the

obstruction, the AV cannot detect it. The AV may Stop to let oncoming traffic go

past or see if the obstruction resolves itself (e.g., starts moving again), Edge into

the oncoming lane to gain better visibility without risking crashing, or Go and begin

passing the obstruction through the oncoming lane.
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Figure 3.2: Illustration of Example 1.

3.1.1 Domain Model

The domain model describes the environment in which the agent operates and the

dynamics of the agent’s actions within that environment. We model this as a stochas-

tic shortest path (SSP) problem, a commonly used form of Markov decision process

(MDP) for reasoning in fully-observable, stochastic environments where the objective

is to find the least-cost path from a start state to a goal state [14]. For the purposes of

this chapter, we consider goal-oriented cost-minimizing problems as they align more

naturally with the problem domains that are considered in our experiments. On the

other hand, extending the theory to mixed-observable and partially-observable MDPs

introduces additional sources of uncertainty, particularly with respect to human in-

teraction, that are non-trivial to handle in our model. We discuss this challenge and

present the partial-observability generalization in Section 3.4.

Definition 7. A domain model, D, is an SSP represented by the tuple ⟨S,A, T, C, s0, G⟩.

For a more complete overview of SSPs and their objective, see Chapter 2, Sec-

tion 2.1.2.
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3.1.2 Autonomy Model

The autonomy model describes the levels of autonomy that the agent can operate

in, restrictions on the situations under which each level is allowed, and the (possibly

negative) utility associated with operating in each level.

Definition 8. An autonomy model, A, is represented by the tuple ⟨L, κ, µ⟩ where:

• L is the finite, partially ordered set of levels of autonomy where each level l ∈ L

corresponds to some set of constraints on the system’s autonomy,

• κ : S×L×A→ P(L) is the autonomy profile where κ(s, l, a) returns the subset

of levels of autonomy L ⊆ L allowed when performing action a ∈ A in state

s ∈ S given that the agent just acted in level l ∈ L, and

• µ : S×L×A×L → R+ is the cost of autonomy where µ(s, l, a, l′) describes the

cost of taking action a ∈ A in level l′ ∈ L in state s ∈ S given that the agent

just acted in level l ∈ L.

While most interpretations of levels of autonomy are presented as ordered sets

of increasing autonomy, in general this need not be the case. In fact, in some cases

different levels of autonomy may be directly compared. Hence, we choose to model

ours more generally as a partially ordered set1 where li ≤ lj if and only if, given any

task (s0, G), V li(s0) ≤ V lj(s0) where V
li is the value function induced by the optimal

policy when the level of autonomy is fixed at li. Note that we consider two levels, li and

lj, to be adjacent if li < lj ∧ ∄lk ∈ L | li < lk < lj. The constraints corresponding to

each level of autonomy can be technical in nature, i.e., internally imposed constraints

such as requiring human supervision in poor weather conditions that may be known

a priori to cause errors, as well as externally imposed constraints such as ethical or

1L could be structured as a polytree or an arbitrary directed acyclic graph, however, for the sake
of clarity we do not consider such levels of autonomy in this thesis.
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Levels of Autonomy Human Involvement
l0 No Autonomy Human driver fully in control of vehicle.

l1 Verified Autonomy Autonomous agent in control of vehicle conditioned on
explicit approval from human for maneuver prior to exe-
cution.

l2 Supervised Autonomy Autonomous agent in control of vehicle conditioned on a
human driver supervising the system ready and capable
of taking control.

l3 Unsupervised Autonomy Autonomous agent in unconditional control of vehicle,
possibly with (but not requiring) a human who can take
over control.

Table 3.1: Levels of autonomy with L = {l0, l1, l2, l3} where l0 → l1 → l2 → l3.

Constraints on Autonomy

Ethical The AV may not be allowed to initiate a transfer of control to a human who is drowsy
or otherwise deemed unfit to operate the vehicle safely.

Legal The AV may not be allowed to operate autonomously inside of a school zone.

Technical The AV may be disallowed from operating autonomously in snowy weather due to
the interference of perception and object detection systems.

Tentative The AV may be initialized to drive in l1 when it has no visibility, but may learn to
perform the action Edge in l3 as it introduces an allowable level of risk by the human
in the car.

Table 3.2: Examples of different types of constraints on autonomy.

legal requirements. Each constraint is associated with a corresponding form of human

assistance or involvement. Intuitively, the higher the level of autonomy, the lower the

cost of human involvement, although this is not a requirement of the model. An

example of a set of levels of autonomy can be seen in Table 3.1.

Additionally, κ can be defined to not only reflect hard constraints such as ethical,

legal, or technical constraints [66, 72, 47, 114] that are fixed throughout the system’s

deployment, but also tentative constraints that can be updated over time. Tentative

constraints allow for a period of learning or adjustment early in the deployment of

the system as the human familiarizes themselves with the system, or the system

learns to act appropriately in its environment. An example of different constraints

on autonomy can be seen in Table 3.2.
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The cost of autonomy, µ, is the cost associated with the act of operating in a

given level of autonomy and is distinct from the base domain cost of the action’s

execution. For example, in a level of autonomy that requires tele-operation from an

off-site human to provide verification to a waiting autonomous vehicle, there may be

an additional cost of operating in that level corresponding to the amount of time

waiting to reach an available tele-operator and receive feedback. In a system with

a finite energy supply that can perform sensing and perception at different levels

of fidelity (corresponding to different levels of autonomy), each level may utilize a

different amount of energy.

3.1.3 Feedback Model

The feedback model describes the agent’s knowledge about and predictions of its

interactions with the human, including the types of feedback it can receive from

the human, how likely each possible type of feedback is at any given time, and the

expected cost to the human for assisting the agent. In this chapter, we only consider

the case where feedback is provided reactively by the human, i.e., provided in response

to the current action being executed by the agent, and generated in the course of the

action’s execution. In Chapter 6 we relax this assumption and consider additionally

feedback that might be provided proactively by the human in response to inferred

future behavior.

Definition 9. A feedback model, F , is represented by the tuple ⟨Σ, λ, ρ, τH⟩, where:

• Σ is the finite set of feedback signals that the agent can receive from the human,

• λ : S×L×A×L → ∆|Σ| is the feedback profile where λ(s, l, a, l′) represents the

probability distribution over feedback signals that the agent will receive when

performing action a ∈ A in level l′ ∈ L in state s ∈ S given that the agent just

operated in level l ∈ L,
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Feedback Signal Interaction Levels of Auton-
omy

∅ No feedback N/A {l0, l2, l3}

⊕ Approval Verbal or Tactile Response {l1}

⊖ Disapproval Verbal or Tactile Response {l1}

⊘ Override Arrested Control {l2, l3}

Table 3.3: Each feedback signal is provided via a fixed and known interaction; for
instance, the feedback signal approval may be provided either by a verbal “Yes” from
the human, or via a tactile response such as pressing a button on a touchscreen,
similarly for disapproval. Override may be recognized by any form of arrested control
by the human during autonomous operation, for instance braking, accelerating, or
steering while the AV is in control. Each signal is only recognized when the AV is
operating at the corresponding level of autonomy.

• ρ : S×L×A×L → R+ is the human cost function where ρ(s, l, a, l′) represents

the cost to the human when the agent performs action a ∈ A in level l′ ∈ L in

state s ∈ S given that the agent just operated in level l ∈ L, and

• τH : S ×A×S → [0, 1] is the human state transition function where τH(s, a, s
′)

represents the probability of transitioning to successors states s′ ∈ S when the

human takes control of the system when the agent attempts to perform action

a ∈ A in state s ∈ S.

Although there are many forms of human feedback that have been studied, we

limit our focus specifically to feedback signals, which are represented as discrete tokens

of feedback that the human can provide to the autonomous agent, either implicitly

(e.g., facial gestures or body posture), or explicitly (e.g., verbal responses or physical

control), as opposed to real-valued reward signals [59, 58] or full demonstrations [30,

88, 90]. The primary reason is to keep the feedback signals semantically simple

in the sense that they are represented compactly by the system while still being

easily and unambiguously associated with the human’s intentions. This reduces the

overhead associated with the human-agent interactions. Each feedback signal may be

associated with a distinct level, or subset of levels, of autonomy and a corresponding
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form of human involvement. An example of such feedback signals and how they may

function is described Table 3.3, and an illustration of the manner in which feedback

is provided during execution can be seen in Figure 3.3. Future directions of research

may investigate extending these feedback signals to address such questions as how

to learn from feedback when there is a degree of severity associated with it, how to

handle proactive feedback, which is intended by the human to be for inferred future

states or trajectories, or feedback in the form of direct action commands.

The human cost function, ρ, is the cost to the human when operating in a given

level and hence is separate from the costs incurred directly by the autonomous agent.

This cost could measure the human’s opportunity cost for being unable to engage in

other activities while assisting the autonomous agent. However, it may additionally

capture other costs to the human, such as additional stress or work added to them

in addition to the time they spend assisting. That is, assisting two different actions,

which take the same time may require different levels of exertion from the human,

for example supervising an autonomous action making a left turn, or manually mak-

ing the left turn. In practice, the human’s cost function may be non-Markovian; for

instance becoming fatigued after repeatedly performing manual control, or becoming

frustrated after extended periods of oscillating between different levels of autonomy,

constantly shifting the demand on the human. While this can be coarsely approx-

imated by conditioning the cost on the previous level of autonomy (as done here),

one can improve this by maintaining a model of the human’s state, similar to what

is done by Costen et al. [32].

If λ and τH are known exactly a priori then the system’s true competence (Defini-

tion 16) can be immediately computed exactly under any κ, and the problem reduces

to a straightforward planning problem. Furthermore, in some problem instances

where the feedback model is known exactly there may be no need to even constrain

the policy space at all (i.e., κ(s, a) = L for every (s, a) ∈ S×A). This is the case when
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the feedback mechanisms are sufficient to prevent the agent from taking actions that

would violate hard constraint; for example, if the human authority always overrides

an action at a level that would violate an ethical, legal, or technical constraint. This

introduces a trade-off in distributing the burden of effort between the designers and

operator(s) of the system to ensure safe and reliable operation in all cases.

However, in this work we are primarily concerned with systems where λ and

τH, and by consequence the system’s true competence, are unknown a priori. In this

case, they must be estimated by functions λ̂ and τ̂H, which are based on observed data

collected online through interactions with the human at various levels of autonomy

that can generate feedback signals. These feedback signals can be analogously treated

as labels in a labeled data set where the data is the state, action, and level that

generated the feedback signal. In Chapter 4, we address situations where the human’s

model of the world does not align with that of the autonomous agent, leading to

feedback that is poorly discriminated by the agent, which reduces its ability to learn

from the signals it receives from the human.

Note that, in many real-world problems, the process of acquiring feedback signals

may not be instantaneous, and in some cases could require a complex process of fully

or partially transferring control to and from a human over an indefinite amount of

time, where each element of the transfer process, such as the communication interface,

is important. The problem of transfer of control in semi-autonomous systems has been

separately studied [103, 124]; however, for the sake of clarity, we do not model this

process explicitly in this work as we focus on the orthogonal problem of modeling

levels of autonomy and competence.

3.1.4 Competence-Aware Systems

A competence-aware system (CAS) represents a planning problem that accounts

for the different levels of autonomy available to the agent and factors in the agent’s
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l0 No Autonomy
l1 Verified Autonomy
l2 Supervised Autonomy
l3 Unsupervised Autonomy
⊕ Approval
⊖ Disapproval
⊘ Override
∅ No Feedback
κ Autonomy Profile
λ Feedback Profile
τH Human Transition Function
GE Gated Exploration
−−→
AH Agent-to-Human Transfer of Control
−−→
HA Human-to-Agent Transfer of Control

Figure 3.3: Illustration of Example 2. During the action selection stage, the policy
π, constrained by autonomy profile κ, is queried for state s, and returns an action
a to be performed at a level of autonomy l. During the action execution stage, the
level of autonomy dictates the manner in which the agent executes the action, and
the form of human assistance involved. Additionally, human feedback signals can
be provided depending on the level of autonomy at different stages of the action’s
execution, including prior to, which is recorded by the CAS and used to update its
internal models during the model update stage.

expectations regarding the likelihood and cost of human feedback (e.g., assistance,

queries, intervention, etc.). The objective of a solution to a CAS planning problem

is to create a plan that best balances the cost of reaching the goal with the cost of

human assistance to achieve the most cost-effective strategy given the constraints of

the problem. Hence, the CAS uses the autonomy model to proactively generate plans

that operate across multiple levels of autonomy by leveraging the feedback model to

predict the likelihood of different feedback signals to optimize the level of autonomy

and minimize the reliance on humans. To this end, we represent a CAS as a multi-

objective planning problem.

Example 2. A competence-aware system with four levels of autonomy—verified,

supervised, unsupervised, and no autonomy—and four type of feedback signals—

approval, disapproval, override, and no feedback. The policy, π, constrained by the

autonomy profile κ, produces an action a at a level l to be performed in state s.
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The level l determines the execution process of the action a, as depicted in the lower

section of the figure. Certain levels may prompt the human for feedback, with a

possibility of complete transfer of control from the autonomous agent to the human.

After the action is executed and data is collected, internal model parameters, λ and

τH, are updated. Finally, the agent may perform gated exploration (Definition 14)

to update the autonomy profile κ, although in practice this would be performed on a

less frequent basis.

Definition 10. A competence-aware system S is a multi-objective planning

model represented by the tuple ⟨S,A, T , C, s0, G⟩, where:

• S = S × L is a set of factored states, each comprised of a domain state s ∈ S

and a level of autonomy l ∈ L.

• A = A×L is a set of factored actions, each comprised of a domain action a ∈A

and a level of autonomy l ∈ L.

• T : S × A × S → [0, 1] is a transition function where T (s, a, s′) represents the

probability of transitioning to successor states s′ ∈ S when taking action a ∈ A

in state s ∈ S.

• C =

[
C µ ρ

]
is a vector of cost functions.

• s0 ∈ S is the initial state where s0 = ⟨s0, l⟩ for some l ∈ L.

• G ⊂ S is the set of goal states.

A CAS state s ∈ S represents the current domain state s and the level of au-

tonomy, l, that the CAS performed its last action in. The purpose of including the

previous level of autonomy in the state representation is to capture the fact that

human feedback can vary depending on the level of autonomy that the agent was

just operating in (for instance, a human may be less likely to override the system if
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they were previously engaged in supervising the system); additionally, we may want

to discourage the system from oscillating between levels of autonomy by imposing a

small cost every time the system changes levels. Note that, one can set G = Ŝ×L for

some Ŝ ⊆ S to indicate that the level of autonomy does not impact the goal condition

or state, for instance setting G = G× L.

A CAS action a ∈ A represents a domain action a to be performed at a given level

of autonomy l, which may alter both the mechanics of how the action is executed, the

form and degree of involvement by the human authority in the execution of the action,

and the types of feedback that the agent can receive from the human authority.

T is a transition function that represents the probability distribution over both

how the state will change and which feedback signal, if any, the agent will receive from

the human when performing an action conditioned on the level the action is being

performed in, the current state, and the previous level that the agent had operated

in (i.e., the timestep prior to the current one). For example, the likelihood of a

human override may decrease if the system had already been acting under supervision

than if they had been acting without supervision, as the human may have a better

understanding of what the system is doing.

Example 3. Given L and Σ, we can specify the state transition function of this

CAS. Given s = (s, l), s′ = (s′, l′), and a = (a, l′), we define T as follows:

T (s, a, s′) =


τH(s, a, s

′), if l = l0,

λ(⊕|s, a)T (s, (a, l2), s′) + λ(⊖|s, a)[s = s′], if l = l1,

λ(∅|s, a)T (s, a, s′) + λ(⊘|s, a)τH(s, a, s′), if l ∈ {l2, l3},

(3.1)

where [·] denotes Iverson brackets. Intuitively, Equation 7 states that when the agent

operates in l0, it follows the transition dynamics of the human who takes control.

When operating in l1, the probability it arrives in state s′ is the probability it is
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approved to take the action times the probability of the state change following T

under level l2, plus the probability that it is disapproved and the state is the same.

In levels l2 and l3, the probability it arrives in state s′ is the probability it succeeds

following T without any human intervention plus the probability that the human

overrides it and takes it to that state. In general, we expect the probability of an

override to be lower (or even 0) in l3 as supervision is not required.

A solution to a given CAS is a policy π that maps states and levels s ∈ S to actions

and levels a ∈ A. Multi-objective decision making has been well-studied [92], and

for our purposes we assume a scalarized approach [92] with a scalarization function f

parameterized by a weight vectorw. In particular, we consider a linear scalarization as

defined in Section 2.2.1 when solving for the optimal policy; however, in some cases a

linearization may be inappropriate, and in fact a well-calibrated scalarization function

may be necessary to accurately reflect the relative impact of each cost function in

any circumstance. With some modifications, the CAS model could also be extended

to handle both lexicographic models [123] and constrained models [2]. However,

the properties that we derive for the scalarized model may not necessarily hold for

arbitrary multi-objective models, and would need to be re-examined in those contexts.

Additionally, we restrict the CAS to only consider policies that are allowed under

the autonomy profile κ in the following way.

Definition 11. Let a = ⟨a, l⟩. Given s = ⟨s, l′⟩ ∈ S, we say that (s, a) is allowed if

l ∈ κ(s, a), and a policy π is allowed if for every s ∈ S, (s, π(s)) is allowed.

We denote the set of allowable policies given κ as Πκ and require that the policy

returned by solving the CAS, π∗, is always taken from argminπ∈Πκ
V π(s0). An illus-

tration of how different autonomy profiles can constrain the full policy space, Π, can

be seen in Figure 3.4.

In general, a competence-aware system planning model is not guaranteed to be a

valid stochastic shortest path problem (see Proposition 1) due to the possible effects
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Figure 3.4: Illustration of a policy space, Π, constrained by three different autonomy
profiles, κ1, κ2, and κ3.

that κ and λ can have on the existence of a proper policy, although in some cases they

may only induce dead-ends away from the initial state for which there is existing work

on how to handle [60]. However, one can ensure that there is a proper policy with

the inclusion of a level of autonomy with a property similar to level l0 in Table 3.1

that allows for (at potentially high cost) the deterministic completion of any action or

task, guaranteeing the existence of a proper policy. Note that we do not need to worry

about the possibility of ρ or µ inducing zero-cost cycles as they are non-negative cost

functions, and the domain model is, by assumption, a valid SSP.

3.2 Properties of a Competence-Aware System

In this section, we will discuss the central properties of a CAS that will allow us

to prove several key results of competence-aware systems. Henceforth, we will assume

that there exists a singular human authority that the semi-autonomous system in a

CAS interacts with, and we will use the notation H to refer to them.

Definition 12. The human authority, H is represented by the tuple ⟨FH, λH, κH⟩

where:

• FH is the set of features used by H when providing feedback,

• λH : S×A→ ∆|Σ| is a stationary distribution of feedback signals thatH follows,

and
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• κH : S × A → P(L) is the fixed mapping from state-action pairs to sets of

autonomy levels that H will allow the autonomous agent to operate in with

nonzero probability.

Intuitively, κH represents the human authority’s belief of the agent’s competence;

by definition any level not contained in the image of κH will never be allowed by H.

First, we begin with a simple proof that a CAS model is, in general, not guaranteed

to be a valid stochastic shortest path problem due to the lack of a proper policy.

Proposition 1. There exists a competence-aware system S that does not admit a

proper policy.

Proof. Let S be a CAS with exactly one level of autonomy, l, where the level of

autonomy works as follows: when the agent attempts to execute action a, they must

first query the human to obtain a binary yes or no feedback signal. If the signal is

yes then the agent may attempt to execute the action according to its model. If the

signal is no then the agent may not attempt to execute the action in its current state.

Let (s0, l) ∈ S denote the initial state and assume (s0, l) /∈ G, where S is the state

space of S and G is the set of goals. Let λH(yes|(s0, l), (a, l)) = 0.0 for every action

a ∈ A (where A is the action set). As the agent will never be able to transition out

of its state, which is not a goal state by assumption, it is clear that there exists no

proper policy.

Second, a fundamental component of the CAS model is the ability to adjust its

autonomy profile over time using what it has learned to optimize its autonomy by

reducing unnecessary reliance on human assistance. However, before operating in

a new level of autonomy, the system may have no knowledge of how the human

will interact with it in that level, i.e., the feedback profile in that new level may be

initialized by default to some baseline distribution. As a result it is necessary that

the system explore levels of autonomy that it predicts are more cost effective than its
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current allowed levels, so that it may learn whether or not it is competent to act in

those levels.

Allowing the system to alter its own autonomy profile, however, can lead to severe

consequences in the real world if not done carefully, mitigating the risk-awareness we

aim to endow via the competence modeling. Therefore, we propose two notions to

ensure a measure of safety and risk-sensitivity in a competence-aware system. The

first is level-safety, which is a notion of the safety of the level of autonomy that the

system is using and is conditioned on both the agent and the human; intuitively,

a CAS is level-safe if it cannot act in levels that the human authority would not

allow. Second is gated exploration, which is a simple extension to standard exploration

methods used in reinforcement learning in which the system must obtain permission

from a human before exploring a new (disallowed) level of autonomy, ensuring that

level-safety is never violated.

Example 4. An autonomous vehicle is initialized to only use levels {l0, l1, l2} when

executing the overtaking maneuver, but learns that there is a very low likelihood of

an override by the human authority during the day with clear visibility and sparse

traffic. Hence, it expects based on estimated costs that its competence is in fact l3,

which is initially disallowed to ensure safety at initial deployment. It therefore queries

the human to approve it to update its autonomy profile κ by adding level l3 under

the stated conditions.

Definition 13. A CAS S is level-safe under κ if κ(s, a) ⊆ κH(s, a) for every (s, a) ∈

S × A.

Definition 14. We define the gated-exploration strategy for (s, a) ∈ S×A as follows:

let adj(l, l′) = 1 if l = l′ or l and l′ are adjacent in L and 0 otherwise, and let

adj(κ(s, a), l′) = 1 if l′ ∈ κ(s, a) or adj(l, l′) == 1 for some l ∈ κ(s, a). Let Pl(L) be

a distribution over L such that Pl(l
′) = 0 if adj(l, l′) == 0, and let l∗ ∼ Pl(L). If
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l∗ ∈ κ(s, a) do nothing, otherwise, query the human authority H to allow for the level

exploration. If the query returns a positive response, set κ(s, a)← κ(s, a)∪{l∗}, and

otherwise do nothing.

Proposition 2. Let S be a CAS with initial autonomy profile κ0. If S is level-safe

under κ0 and follows the gated-exploration strategy, then S will be level-safe under

κt for any t ≥ 0.

Proof. This is straightforward to observe by applications of the definitions. If S is

level-safe under κ0, then for all (s, a) ∈ S × A, κ0(s, a) ⊆ κH(s, a) by definition. If

there exists t > 0 for which κt(s, a) ̸= κ0(s, a) for some (s, a) ∈ S × A, then there is

some l∗ ∈ κt(s, a) \ κ0(s, a). By the definition of gated exploration and κH, it must

be that l∗ ∈ κH(s, a), and hence κt(s, a) ⊆ κH(s, a). As (s, a) is arbitrary, this holds

for all (s, a) ∈ S × A, and hence S is level-safe.

Next, we introduce a notion of feedback consistency, which is a property of how

consistent the human authority is in providing the same feedback given the same

query by the acting agent.

Definition 15. Let FH = {FH
1 , ..., FH

n } be the set of features used by the human

authority, H, and let SH = FH
1 × · · · × FH

n × L. The ground truth feedback

function is a deterministic mapping f : SH×A→ Σ. H is perfectly consistent if

λH(f(s, a)|s, a) = 1 ∀s ∈ S, a ∈ A. If λH(f(s, a)|s, a) ≥ ϵ for ϵ ∈ (0, 1) ∀s ∈ S, a ∈ A,

then H is ϵ-consistent.

Unless otherwise stated, we assume that the human authority is ϵ–consistent

henceforth. We now define three central properties of a CAS.

Definition 16. Let λH be the stationary distribution of feedback signals that the

human authority follows. The competence of CAS S, denoted χS , is a mapping
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from S × A to the optimal (least-cost) level of autonomy given perfect knowledge of

λH. Formally:

χS(s, a) = argmin
l∈L

q∗(s, (a, l);λH) (3.2)

where q∗(s, (a, l);λH) is the cumulative expected cost under the optimal policy π∗

when taking action a = (a, l) in state s conditioned on the human authority’s feedback

distribution, λH.

Fundamentally, the system’s competence for executing action a in state s, χS(s, a),

is the most beneficial (e.g., cost effective) level of autonomy were it to know the true

human feedback distribution. When L is an ordered set, we expect this to generally

be the highest level of autonomy allowed by the human; however, this need not be the

case. In principle, the highest allowed level of autonomy could require more frequent

human interventions, e.g., due to lower levels of trust by the human in the system [52],

that may render it less efficient overall relative to a lower level of autonomy.

It is important to emphasize that this definition of competence relies on λH—

the human’s mental model of the agent’s capabilities—and hence is a definition of

competence on the overall human-agent system, and is explicitly not just a measure

of the underlying agent’s technical capabilities (i.e., D). A corollary of this fact is

that the CAS is as competent as the human authority believes, and allows, it to

be. A human authority that has a poor understanding of the system’s abilities could

lead to the system having a different competence than a human authority that knows

perfectly the limitations and capabilities of the system, by either under-utilizing or

over-utilizing the system in an autonomous capacity. In this work, we treat the human

as an expert with a good understanding of the system’s capabilities, but future work

will look to extend the CAS to the setting where the human authority may have little,

or even no, initial technical understanding of the system and its abilities. One reason

for modeling competence in this manner is to avoid relying on arbitrary thresholding

based on evaluative metrics to determine when a system is competent or not.
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We say that a CAS S is λ-stationary if, in expectation, any new feedback drawn

from the true distribution λH will not affect λ enough to change the optimal level of

autonomy for any s ∈ S and a ∈ A. We show below that, under standard assumptions,

S will converge to λ-stationarity.

Definition 17. Let S be a CAS and let U(λ) be the q-value of (s, a) under the

optimal policy given λ where S executed the action a in level l in state s. We define

the expected value of sample information (EVSI) on σ ∈ Σ for (s, a) to be:

∑
σ∈Σ

max
l∈L

∫
Λ

U(l, λ)λ(σ|s, a, l)p(λ)dλ−max
l∈L

∫
Λ

U(l, λ)p(λ)dλ. (3.3)

Definition 18. Let S be a CAS. S is λ-stationary if for every state s = (s, l) ∈ S,

and every action a ∈ A, the expected value of sample information on σ ∈ Σ for (s, a)

(Eq. 3.3) is less than ϵ for any ϵ greater than 0.

Proposition 3. Let λs,a
t be the random variable representing λ(s, a) after having

received t feedback signals for (s, a) where each signal is sampled from the true dis-

tribution λH(s, a). Then, as t→∞, the sequence {λs,a
t } converges in distribution to

λs,a
H = E[λH(s, a)].

Proof. As each signal is drawn from λH(s, a) i.i.d, then by a straightforward appli-

cation of the law of large numbers the sequence will converge in probability to λs,a
H ,

which directly implies the claim.

Theorem 1. Let S be a CAS, and let λs,a
t be the random variable representing λ(s, a)

after having received t feedback signals for (s, a) where each signal is sampled from

the true distribution λH(s, a). As t → ∞, if no (s, a) is starved, S will converge to

λ-stationarity.

Proof. Let s ∈ S and a ∈ A. As s and a are arbitrary and we assume that no (s, a)

is starved, it is sufficient to show convergence to stationarity for (s, a) as t → ∞.
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By Proposition 3, {λs,a
t } will converge to λs,a

H in distribution given our assumptions.

Because {λs,a
t } converges in distribution, limt→∞ Pr(|λs,a

t − λs,a
H | > ϵ) = 0 ∀ϵ > 0.

Therefore, in the limit the probability that λ = λs,a
H after t steps, pt(λ), defines a

Dirac delta function with point mass centered at λH. Hence we get that, limt→∞ EVSI

(Eq. 3.3)

=
(
lim
t→∞

∑
σ∈Σ

max
l∈L

∫
Λ

U(λ, l)λ(σ|s, ∅, a, l)pt(λ)dλ
)
−
(
lim
t→∞

max
l∈L

∫
Λ

U(λ, l)pt(λ)dλ
)

=
(∑

σ∈σ

max
l∈L

U(λH, l)λH(σ|s, ∅, a, l)
)
−
(
max
l∈L

U(λH, l)
)

=
∑
σ∈Σ

max
l∈L

U(λH, l)(1− λH(σ|s, ∅, a, l))

= max
l∈L

U(λH, l)
(
1−

∑
σ∈Σ

λH(σ|s, ∅, a, l)
)

= max
l∈L

U(λH, l)(1− 1)

= 0.

Second, we say that a CAS S is level-optimal in some state if, under its current

optimal policy, the action it takes in that state is performed at its competence for

that state-action pair.

Definition 19. Let S be a CAS. S is level-optimal in state s if

π∗(s) = (a, χS(s, a)) (3.4)

If this holds for all states we say that S is level-optimal. Similarly, S is γ-level-

optimal if this holds in γ|S| states for γ ∈ (0, 1).

The primary goal of a competence-aware system is to reach level-optimality while

maintaining level-safety. As we have already shown that a CAS will maintain level-
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safety under the gated-exploration strategy (given an initial, level-safe autonomy

profile), we therefore want to show that under certain conditions, a competence-

aware system S will be guaranteed to reach level-optimality. In other words, that

the system is guaranteed to reach a point where it operates at its competence in all

situations.

To prove that a competence-aware system will reach level-optimality, we rely on

the notion of gated exploration as detailed in Definition 14. However, we also require

the following exploitation approach: if S has reached λ-stationarity then it no longer

explores under the exploration strategy and instead exploits its knowledge by deter-

ministically selecting the optimal level of autonomy at that point, i.e., for any given

(s, a) ∈ S × A, the system will use a level l ∈ argminl∈κ(s,a) q(s, (a, l); λ̂). However,

as the theory only proves convergence to λ-stationarity (that is, an expected value of

sample information of 0 over all σ ∈ Σ for every (s, a) ∈ S×A) in the limit, we instead

simply require that for any fixed z ∈ R+, sufficiently small, the system will switch to

exploitation once the expected value of sample information falls below z everywhere,

which will happen in finite time. We will refer to this below as exploitation under

stationarity.

Definition 20. Let S be a CAS, and let κt represent the autonomy profile κ at time

t. Given s ∈ S and a ∈ A, we say that l ∈ L is reachable from κt for (s, a) if there

exists at least one path from κt(s, a) to l ∈ L, where all levels along the path are in

κH(s, a).

In the following text, let κt refer to the autonomy profile, κ, after the tth feedback

signal has been received.

Theorem 2. Let S be a CAS that follows the gated exploration strategy and performs

exploitation under stationarity, where χS(s, a) is reachable from κ0 for all (s, a) ∈

S × A. Then if no (s, a) is starved, as t→∞, S will converge to level-optimality.
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Proof. Fix s ∈ S and threshold z ≪ 1 ∈ R+. We need to show that in the limit,

π∗(s) = (a, χS(s, a)). By Proposition 1, S will converge to λ-stationarity for (s, a) for

all a ∈ A. Hence there is a finite point t at which the expected value of information

on Σ falls below z for (s, a) for every a ∈ A and S will exploit under stationarity for

s. That is, at such time, π∗(s) = (a, argminl∈κt(s,a)(q
∗(s, (a, l)). By Proposition 3,

this value is exactly the definition of χS(s, a) provided that χS(s, a) ∈ κt(s, a). By

assumption, χS(s, a) is reachable from κ0(s, a) ⊆ κH(s, a), so given that under the

gated exploration strategy, there is a nonzero probability of reaching χS(s, a), and as

s is arbitrary, we are done.

3.3 Evaluation

To test the competence-aware system, we implemented the CAS model in two sim-

ulated autonomous vehicle domains at different levels of decision-making abstraction.

The first domain is a high-level navigation problem in which an autonomous vehicle

must plan (and execute) the optimal route to take between two locations conditioned

on its knowledge about different intersections and streets and its own competence in

performing different maneuvers at the various locations. The second takes a more

fine-grained look at one of the maneuvers that can be performed in the first domain,

namely passing an obstacle that is blocking its lane, and is modeled after the domain

depicted in Example 1.

Gated Exploration

In all experiments, we used the gated exploration strategy as defined in Defini-

tion 14. While a variety of different distributions could be used for the exploration

strategy, we use an extension of the standard Boltzmann softmax distribution [57]

over q-values in the adjacency set of l ∈ L:
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P (l′) = adj(κ(s, a), l′)
exp(−q(s, (a, l′); λ̂))∑

l′′∈L adj(κ(s, a), l
′′) exp(−q(s, (a, l′′); λ̂))

(3.5)

where q(s, (a, l); λ̂) = C(s, (a, l)) +
∑

s′∈S T (s, (a, l), s
′)V (s′; λ̂) is the expected cumu-

lative reward when taking action (a, l) ∈ A in state s ∈ S conditioned on the current

feedback profile λ̂.

To improve exploration efficiency, we introduce a potential-based mechanism in

our experiments in which, for each s ∈ S and a ∈ A, we maintain a potential for each

level l ∈ L, γs,a,l, which is updated at each level-exploration step, defined as

γt+1
s,a,l ←


0 l′ is chosen

min
(
γt
s,a,l + P (l), 1

)
otherwise

(3.6)

where γt
l is the potential at time t and P (l) is defined in Equation 3.5. For readability

purposes, define γt(s, a, l) := γt
s,a,l; given this potential function we can slightly alter

Equation 3.5 to be

P̂ (l′) = adj(l, l′)
exp(γt(s, a, l′))∑

l′′∈L adj(l, l
′′) exp(γt(s, a, l′′))

(3.7)

which defines a new distribution from which to sample new levels of autonomy to

explore.

In our experiments, a potential matrix was initialized for the CAS model and

updated each time the autonomy profile was updated via gated exploration. Gated

exploration was implemented by sampling from the above distribution to update the

autonomy profile for each (s, a) input by including the sampled level if not in κ(s, a)

already, and otherwise doing nothing. The “gated” element was simulated in all

experiments by observing the likelihood of an override, and adding the highest level

(the only level disallowed initially) if sampled if the likelihood is below 0.15 for the

AV navigation domain or below 0.05 for the AV obstacle passing domain.
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Figure 3.5: Left : the map of the region with actual locations from OpenStreetMap.
Right : the abstracted representation of the navigation graph.

Autonomous Vehicle Navigation

Domain Description

In this domain, an autonomous vehicle operates in a known map represented by

a directed graph G = (V,E) where each vertex v ∈ V represents an intersection and

each edge e ∈ E represents a road; the graph used can be seen in Figure 3.5 and

is modeled after locations in the area of Amherst, Massachusetts. The autonomous

vehicle is tasked with navigating the map safely from a start vertex to a goal vertex.

Each vertex (intersection) state is represented by an ID for the vertex, a boolean

indicator of the presence of pedestrians, a boolean indicator of the presence of an

occlusion limiting or blocking visibility, the number of other vehicles at the intersec-

tion (0-4), and the vehicle’s heading. Each edge (road) state is represented by a start

vertex ID, a destination vertex ID, the number of drivable lanes on the current road

segment, the direction of travel, and a boolean indicator of the presence of an obstruc-

tion blocking the agent’s lane. Additionally, each edge is associated with a known

length and speed of travel. Model parameters dictating the probabilities of each

state variable (e.g., the probability of a pedestrian being at a given intersection upon

reaching it) are assumed to be known offline and given as part of the model input. In

vertex states, the agent can either Go Straight, Turn Right, Turn Left, U-Turn,
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each of which has a cost of 10.0, or Wait, which has a cost of 1.0. All maneuvers suc-

ceed deterministically. In edge states, the agent can either Continue or Overtake an

obstruction, each with unit cost. Overtake is assumed to succeed with probabilities

[0.2, 0.5, 0.8] depending on the number of lanes. Continue fails deterministically in

the presence of an obstruction, and if there is no obstruction transitions the agent

to the end-vertex of the edge with probability p ∝ speed(e) / length(e) or otherwise

to the same edge with some probability of an obstruction occurring. We model the

expected duration as part of the transition function, rather than the cost function,

to allow for the development of an obstruction in the AV’s lane while traversing an

edge segment, which may be very long in real life.

We consider the following levels of autonomy, L = {l0, l1, l2, l3} where l3 does not

require any involvement from the human at all (i.e., we assume the probability of

an override is 0), l2 allows the agent to execute an action under supervision, during

which the human may override the action if they deem it unsafe, l1 requires explicit

approval from the human for an action prior to its execution during which, if approval

is received, the agent may attempt to execute the action under supervision, and if

the action is disapproved by the human the agent must select a different action to

perform, and l0 requires full transfer of control to the human to complete the action.

The autonomy profile, κ, is initialized to L in edge states without an obstruction

and otherwise to {l0, l1, l2}. The feedback profile, λ, is initialized to be uniformly

random over the possible feedback signals. There is an associated cost of 10.0 to the

human for operating in l0, as the human is required to manually control the vehicle,

a cost of 2.0 for operating in l1, a cost of 1.0 in level l2, and no additional cost to

the human when operating in l3. The system incurs a cost of 3.0 when receiving

a negative response in l1 and a cost of 10.0 when receiving an override in l2 as we

assume that the human completes the intended action.
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Figure 3.6: Empirical results from simulations of a fixed route (12 → 7) showing
the expected cost (left) to goal of a CAS and the average cost (right) over 100 trials
with a CAS (blue) and without a CAS (red) as a function of the number of signals
received.

Results

To validate the CAS model in the AV navigation domain, we randomly selected a

start node and a goal node each episode to ensure that the system had the ability to

visit the entirety of the graph. We repeated this for four different human authorities

where we varied their consistency: 0.8, 0.9, 1.0 (i.e., perfectly consistent), and, in

the final case, a human who starts with a very low consistency (0.6) to reflect their

poor understanding of the capabilities of the system, but increases their consistency

by a small amount (0.01) each episode to reflect their improved understanding of

the capabilities of the system over time as they interact with it. Figures 3.6, 3.7

and 3.8 report the results from the experiment conducted in the autonomous vehicle

navigation domain.

Figure 3.6 depicts the results on a fixed route (node 12 to node 7 in Figure 3.5).

The left graph shows the expected cost of the route and the right graph shows the

actual mean cost (averaged over 100 simulations) of the CAS (blue) compared against

an agent just using the domain model agnostic to its competence, with a human

overriding as necessary (i.e., effectively always operating in level l2) (red). These

results demonstrate that by learning an accurate competence model and incorporating

that into the planning model, a CAS can efficiently (< 40 feedback signals) improve
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both its average performance and expected performance, significantly outperforming

a system that is agnostic to its competence and the dynamics of human interaction.

These experiments were taken from the human with consistency ϵ = 0.9 but we note

that very similar results were obtained in all cases. Figure 3.7 depicts in the left

column the convergence of the level-optimality of the competence-aware system as

a function of the number of feedback signals received, and in the right column the

number of signals received over the course of 100 episodes (where each episode is a

random route) for a system with a CAS (blue) and a system without a CAS (red).

Each row corresponds to a human authority with a different consistency, ϵ, as detailed

above. In all cases, the level optimality reaches 100% over all reachable states in the

domain. Interestingly, in Figure 3.7d, the results are more comparable to a human

with a fixed consistency of 0.9 or 1.0 in both level-optimality convergence rate and

the rate at which feedback signals are received, than they are to a human with a fixed

consistency of 0.8, which requires roughly twice as many feedback signals to converge

to level-optimality. This demonstrates that even a CAS with a human who starts

with an initial poor understanding of the system’s capabilities, and consequently low

consistency, can efficiently reach level-optimality if the human’s understanding and

consistency improves at a consistent rate. Because we assume that the CAS model

captures all features used by the human in determining their feedback, as long as the

feedback is not provided randomly, convergence will still occur in the limit, albeit more

slowly the greater their inconsistency. In Chapter 4 we investigate the case where the

CAS does not capture all features used by the human a priori. The figures in the

right column illustrate that without a CAS the number of feedback signals provided

by the human grows linearly, demonstrating the significant disparity in burden placed

upon the human in a system without a CAS model compared to a system with a CAS

model. Overall these results demonstrate the primary goal of the CAS model, which

is that it enables a system to efficiently reach level-optimality, optimizing the trade-off

61



(a) ϵ = 0.8 (b) ϵ = 0.9

(c) ϵ = 1.0 (d) ϵ = 0.6:1.0

(e) ϵ = 0.8 (f) ϵ = 1.0

Figure 3.7: Empirical results from the autonomous vehicle navigation domain with
varying levels of human consistency showing the level-optimality as a function of
the number of feedback signals received (3.7a – 3.7d) and the number of feedback
signals received over the first 100 routes executed (3.7e - 3.7f). In Figure 3.7d, the
human consistency increases after each route is executed, mimicking a human whose
consistency improves the more it interacts with the system.
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Figure 3.8: Comparison of routes taken before and after the CAS learns its com-
petence. Purple indicates shared route, red indicates route taken by starting model
alone, blue indicates route taken by ending model alone. The green node represents
the starting node, and the yellow node represents the goal node.

between autonomous performance and human assistance, thereby reducing the net

burden placed on the human over the course of the system’s operation.

Figure 3.8 depicts the change in routes taken between the first episode and the

100th episode for the CAS model for four fixed routes. Here, purple denotes parts of

the route taken that are the same, red denotes parts of the route that are taken in the

first episode but not the 100th, and blue denotes parts of the route that are taken in

the 100th episode but not the first. The purpose of this figure is to illustrate themacro

policy changes made as the CAS learns its competence — namely altering its route to

avoid states or trajectories of low competence, which would require excessive human

assistance — in addition to the micro changes of selecting which level of autonomy

to use in any given situation. In general, we find that the AV’s behavior changes

63



Figure 3.9: Illustration of the AV obstacle passing domain.

to avoid areas densely populated with pedestrians, occlusions, and single lane roads,

such as downtown Amherst (nodes 8-11) and UMass Amherst (nodes 6-8).

Autonomous Vehicle Obstacle Passing

Domain Description

In this domain, modeled after the problem depicted in Example 1 and depicted in

Figure 3.9, an autonomous vehicle must overtake an obstacle that is blocking its lane

on a one-lane road. Importantly, this maneuver required that the AV drive into the

oncoming traffic’s lane to overtake the obstacle, a potentially dangerous maneuver.

Each state is represented by the vehicle’s position (0-4), the position of an oncom-

ing vehicle (0-3, or unknown), and whether the oncoming vehicle has given priority to

the AV to attempt its overtake. Model parameters dictating the behavior of oncoming

vehicles is assumed to be known offline and given as part of the model input.

The autonomous vehicle can perform the following actions: Wait, Edge, and Go.

Edge provides visibility of oncoming traffic to the AV if unknown and otherwise ad-

vances the AV’s position with probability 0.5. Go deterministically advances the AV’s

position, which results in a crash if the AV and an oncoming vehicle share the same

position. Stop holds the AV’s position, during which time the oncoming vehicles posi-
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tion may change (or become empty), or the oncoming vehicle may give priority to the

AV. If the AV has priority it is assumed that the oncoming traffic will stay stopped

until the AV has finished its overtake. All actions have unit cost, and crashing incurs

a very high cost.

We consider the following levels of autonomy, L = {l0, l1, l2} where l2 does not

involve the human at all, l1 allows the agent to execute an action under supervision,

during which the human may override the action if they deem it unsafe, and l0 requires

full transfer of control to the human to complete the action. Note that we do not

include the level l1 from the prior domain (referred to earlier as “verified autonomy”

in Table 3.1) due to the second-to-second nature of decision making in this safety-

critical domain, where prompting the human for explicit approval before every action

may be impractical or even dangerous.

The autonomy profile, κ, is initialized to {l0, l1} in all cases; i.e., in such a safety

critical domain it is expected that, initially, the human is always aware and ready to

override the system. As above, the feedback profile λ is initialized to be uniformly

random. The human incurs a cost of 10.0 when the CAS operates in l0 but is assumed

to complete the maneuver successfully (i.e., the human does not give back control part

way through passing the obstacle), a cost of 1.0 when supervising in l2, and no cost

in l3. The system receives a penalty of 10.0 when being overridden by the human.

Results

In the AV obstacle passing domain, the problem—i.e., the initial state and goal

state—stayed fixed each episode. Figures 3.10a and 3.10b report the results from

the experiment conducted in the autonomous vehicle obstacle passing domain. Fig-

ure 3.10a shows the level-optimality of the CAS over all states in the domain and

all reachable states (each episode) plotted against the number of feedback signals re-

ceived from the human, in this case consisting only of overrides. The figure illustrates
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(a) Autonomous Vehicle Obstacle Passing
Domain Level-Optimality

(b) Autonomous Vehicle Obstacle Passing
Average Cost

Figure 3.10: Empirical results from the autonomous vehicle obstacle passing domain.
Left: depicts the level-optimality over reachable states (red) and all states (blue) as a
function of number of received feedback signals. Right: depicts the average task cost
(1000 simulations) as a function of number of received feedback signals.

that the CAS is able to converge to level-optimality on all reachable states in the

domain with slightly more than 100 feedback signals. The slower convergence rate

is due to a stricter requirement on gated exploration due to the more safety-critical

nature of the domain. 100% Level-optimality is not reached on the whole state space

due to the absence of a portion of the state space ever being visited (or even reach-

able), preventing the human authority from providing any feedback for actions taken

in those states. Figure 3.10b reports the expected cost of overtaking the obstacle

and illustrates that the expected cost decreases as the level-optimality increases, cor-

roborating the results from the previous domain. This also demonstrates that, in

certain domains, performance may be improved to near optimal performance without

even needing to converge to full level-optimality across the entire state space due to

variations in state reachability trends.

3.4 Partially-Observable CAS

Throughout this chapter, we have thus far only considered the application of

competence-aware systems to fully-observable domains, modeled as either an MDP or
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an SSP. However, many interesting domains in the open world are not fully observable,

and include various sources of uncertainty over the system’s state at each time step.

For example, perceptual information can be noisy, providing only a distribution over

certain state factors; inference of state information from perceptual information can

itself be imperfect, leading to inferred states of the world that are incorrect, with

some probability; or state information may simply be unavailable to the system at

certain times, such as if there is an occlusion that blocks a system’s vision entirely.

It is therefore important, in the pursuit of developing competence-aware system in

the open world, that we consider these cases, and the question of how best to model

competence when a system is unaware of its exact state. However,, there are two

challenging factors that must be addressed; first, how to associate feedback from the

human with states in a belief state for the purpose of learning competence (and,

implicitly therefore, what to assume about what the human themselves observes);

and second, how to best define competence in belief states in a way that still ensures

the core properties we wish to preserve.

3.4.1 Preliminaries

Recall from Chapter 2 that in a POMDP, instead of observing its true state,

the agent receives an observation ω ∈ Ω in belief state b ∈ ∆|S| after taking action

a ∈ A, updating their belief state to b′ ∈ ∆|S| given both the observation function

O : A× S → ∆|Ω| and T : S ×A×A→ [0, 1] according to the belief update equation

(Equation 2.17). We can now redefine the CAS model for POMDPs as follows:

Definition 21. A partially observable competence-aware system (POCAS) is repre-

sented by the tuple ⟨S,Ω, A, T ,O,C, γ⟩ where:

• S = S×L is a finite set of states comprised of a domain state s ∈ S and a level

of autonomy l ∈ L.
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• Ω is a finite set of observations comprised of a domain observation ω ∈ Ω and

a level of autonomy l ∈ L.

• A = A× L is a finite set of actions comprised of a domain action a ∈ A and a

level of autonomy l ∈ L.

• T : S × A → ∆|S| is a transition function representing the distribution over

successor states s′ ∈ S given that the agent performed action a ∈ A in state

s ∈ S.

• O : A× S → ∆|Ω| is an observation function representing the distribution over

observations ω ∈ Ω given that the agent is in state s ∈ S having just performed

action a ∈ A.

• C =

[
C µ ρ

]
is a vector of cost functions.

• γ ∈ (0, 1] is a discount factor.

We can express the POCAS as an equivalent belief-state MDP (Definition 6) with

belief-states B = ∆|S|, where a solution is a policy, π : B → A. As with the fully-

observable CAS model, we assume a standard linear scalarization approach to the

multiple objectives with weight vector w, such that the objective is to find the policy

that minimizes the function wTV
π
(b) over all b ∈ B. Here, V

π
(b) = [V

π

1 (b) · · ·V
π

k(b)]

where each V
π

i (b) is defined as

V
π

i (b) = ci(b, π(b)) + γ
∑
b
′∈B

τ(b, π(b), b
′
)V

π
(b

′
) (3.8)

such that

τ(b, a, b
′
) =

∑
ω∈Ω

Pr(b
′|b, a, ω)

∑
s′∈S

O(ω|a, s′)
∑
s∈S

T (s, a, s′)b(s) (3.9)
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and

ci(b, a) =
∑
s∈S

b(s)wCi(s, a) (3.10)

are the belief-state transition and cost function(s) respectively.

3.4.2 Constraining Autonomy in Belief States

Recall that a fully-observable CAS can constrain its policy space, Π, by κ to

only allow policies that satisfies the condition that if π(s) = (a, l), then l ∈ κ(s, a).

Unfortunately, this approach does not naturally extend in the same manner, i.e., by

constraining the policy on belief states according to a distributional extension of κ.

To see why, consider the following “norm-based” methods for κ defined on a belief

state b ∈ ∆|S| and action a ∈ A:

Optimistic: ∪s∈S|b(s|s)>0 κ(s, a)

Conservative: ∩s∈S|b(s|s)>0 κ(s, a)

Max-Density: argmax
κ∈P(L)

∑
s∈S

b(s|s)
[
κ(s, a) == κ

]
Max-Likelihood: κ

(
argmax

s∈S
b(s|s), a

)

The potential issue with this approach – that is, selecting and adhering to a

“norm” when determining which level of autonomy to us – is that the selected level

of autonomy may not be allowed in the autonomy profile on the true underlying

domain state in all cases except for Conservative, where the intersection may instead

be the empty set meaning that there is no level of autonomy that is allowed for a

given action, i.e., the action is not allowed at all. Although in practice this may be

unlikely to occur, it is simple to create a problem where this leads to arbitrarily bad

performance.

In general, competence may not be dependent on all state features, and conse-

quently only those features that are necessary for modeling competence need to be
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observable. However, we can also not guarantee that this requirement is satisfied

for arbitrary problem settings either. Instead, we propose that instead of condition-

ing the autonomy profile on the belief state which may be highly uncertain, we can

instead condition it on the most recent observation made by the system, which is al-

ways fully observed by definition and contains all fully-observable state information.

Consequently, we can redefine the POCAS state space to be S = S×Ω×L to ensure

that both the autonomy profile, κ, and the competence, χ, are both defined on the

fully-observable portion of the state (in the worst case, only the last observation) as

desired. This is also an attractive solution as the belief space is, in general, infinite,

whereas there are only a finite, discrete number of observations in the observation set

over which the POCAS will learn its competence.

3.4.3 Evaluation

To evaluate the partially-observable CAS, we consider a modified, partially-observable

version of the obstacle passing domain (Figure 3.9). Here, the autonomous vehicle

cannot directly observe the position (or existence) of oncoming and trailing vehi-

cles which are a causal factor in their competence. Instead, the vehicle can observe

whether there is oncoming or trailing light detected which may indicate the presence

of an oncoming or trailing vehicle, respectively. The likelihoods are determined by

environmental factors such as time of day and weather conditions. However, the other

elements of the CAS model such as the levels of autonomy and feedback signal set are

unchanged. We provide the competence-learning results in Figure 3.11. Here, we plot

the level-optimality as a function of feedback signals over all state-action pairs in the

domain (blue) and all state-action pairs visited by the agent during simulation (red).

Although the level-optimality over all state-action pairs plateaus around 62.5% as the

system, acting conservatively due to the cost of failure and not encountering a large

portion of the state-action space while learning, the agent quickly reaches near 100%
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Figure 3.11: Partially-Observable AV Obstacle Passing Domain Level-Optimality

level-optimality on its actual operative performance, demonstrating that a CAS can

still effectively operate at its competence in a partially-observable domain when we

condition competence on only the most recent observation.

3.5 Discussion

3.5.1 Autonomy Profile Initialization

Because we restrict the system to choose policies from Πκ, if the autonomy profile

κ is altered, so too is the space of allowed policies. Hence, there is a trade-off when

setting the initial constraints on the allowed autonomy of the system, i.e., κ. One

can take a conservative approach and constrain the system significantly, for instance

setting |κ(s, a)| = 1 so that a single level is deterministically selected for every (s, a) ∈

S × A, reducing the problem complexity to solving the underlying domain model.

However, doing so risks a globally sub-optimal policy with respect to L and may,

depending on the initial κ, make reaching the globally optimal policy impossible. On

the other extreme, one can take a risky approach and not constrain the system at

all a priori, leaving the decision of choosing the level of autonomy completely up to

the system when solving its model. This approach, while necessarily containing the
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optimal policy (subject to the agent’s model) is naturally slower due to the larger

policy space and inherently less safe as the agent can take actions in undesirable

levels. Figure 3.4 illustrates different partitionings of the policy space under different

autonomy profiles.

We propose that in practice, the desired initialization is somewhere in the mid-

dle; κ should be less constraining in situations where the expected cost of failure is

relatively low, and more constraining in situations where it is high. While the model

makes no such requirements, in many practical settings such information may be at

least partially known a priori for a specific domain. For instance, in an autonomous

vehicle, κ should be more constraining initially in situations involving pedestrians,

poor visibility, or chaotic environments such as large intersections with multiple ve-

hicles; however, initial testing may indicate that driving along a highway is low-risk

and may not require a highly constraining κ.

3.5.2 Model Assumptions

We now discuss the practical considerations of the main assumptions made in

Section 3.1.4: (1) the human authority, H, provides consistent feedback, (2) the

human authority’s feedback comes from a stationary, Markovian distribution, and

(3) the environment the agent operates in is stationary.

Implicit in Assumption (1) is that humans respond appropriately to each situation,

possibly with some noise representing the likelihood of human error. However, because

of the limited scope of the system’s domain model, it could be that perfectly consistent

feedback from H’s perspective is perceived to be random by the system, particularly

when it is not aware of the domain features that explain the human feedback. As an

example, consider a robot that can open ‘push’ doors and cannot open ‘pull’ doors, but

does not model this discriminating feature. If the robot cannot discriminate between

these types of doors, consistent and correct human feedback (approving autonomously
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opening ‘push’ doors only) may be perceived by the robot to be arbitrary or random.

Although in practice one may wish to avoid such situations, we emphasize that the

system will still converge to its competence for the state features it uses—possibly a

low competence—when the feedback distribution appears to be random.

Assumption (2)—that the human feedback distribution λH is stationary and Marko-

vian from the start—implies that the human has good knowledge of the system from

the start. That may not be realistic in certain domains. It is more likely that the

feedback signals may vary based upon the observed performance of the system over

time. However, as the human authority observes the system’s performance, it is rea-

sonable to assume that their feedback distribution will eventually reach a stationary

point as long as the system’s underlying capabilities stay fixed. Therefore, even if

there are erroneous feedback signals provided early in this process, in the limit the

system will still converge to a fixed competence. Two possible means of expediting

this is to introduce a training phase at the beginning of the system’s deployment to

allow the human to observe the system’s performance and develop accurate expec-

tations regarding the system’s capabilities, and to introduce standardized feedback

criteria that is made known to the human a priori.

Finally, while the assumption of environmental stationarity may not always hold in

general, for many real-world problems it is reasonable that the systems’ are designed

with respect to the general environment that the system is expected to handle, and

that, consequently, the system’s domain model should capture the any environmental

variability it may face. For instance, an autonomous vehicle built and deployed in the

spring should reasonably be expected to have a model for snowy conditions if deployed

in an environment where it snows during the winter. However, it is also the case that

online model updates can be used to ameliorate scenarios where this is not the case,

as is often done in many real-world systems; in such cases, a system’s designer can

conservatively err on the side of restarting the competence-learning from scratch, but
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investigating ways to bootstrap a system’s competence model in such situations is an

interesting direction for future work on competence-aware systems.

3.5.3 Complexity of Partial Observability in CAS

In this chapter we showed that the competence-aware system framework can be

generalized from fully-observable MDPs to partially-observable MDPs by augmenting

the state representation with the observation set, and conditioning competence on the

most recent observation. However, a limiting factor is the computational tractability

of solving POMPDs as the size of the state space increases, as our approach increases

the state space multiplicatively by the size of the observation set. Our experiments

considered a simple observability condition with only 4 unique observations for the

non-fully observable state factors, yet still relied on online POMDP solvers as offline

solvers did not find a policy within a reasonable amount of time. Extending the

competence-aware framework to POMDPs with larger and more complex observation

spaces may therefore become intractable to solve completely.

Consequently, an important area for future work will be to reduce the computa-

tional complexity in larger, more complex settings. We propose that one approach is

to leverage the recently proposed semi-observable Markov decision process [9] which

was shown to have significant computational benefits over existing state-of-the-art

POMDP solvers, and often led to higher quality solutions as well. One shortcoming

of this approach is the reliance on the addition of a reveal action which determin-

istically reveals the agent’s state on demand (at high cost); we propose that the

competence-aware system, where there is an existing reliance on human assistance,

may naturally provide a setting where such an action is feasible.
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3.6 Conclusion

In this chapter, we introduce a new framework for representing, learning, and

reasoning with self-competence models in semi-autonomous systems. Competence in

our approach represents the level of autonomy that the system can handle reliably

based on human feedback. More precisely, we define competence as the optimal level

of autonomy in any given situation, consistent with perfect human feedback. We

present a novel decision-making framework, competence-aware systems, that enables

a semi-autonomous system to learn its own competence over time through interactions

with a human authority. The result is a system that can handle risky scenarios by

relying on the human authority to compensate for limitations or constraints on its

autonomous abilities, while simultaneously optimizing its autonomous operation to

reduce unnecessary reliance on humans.

We illustrate the operation of a competence-aware system with a running exam-

ple and prove several theoretical properties of the CAS model. In particular, we

prove that under standard convergence assumptions the model will converge to level-

optimality, guaranteeing that the system consistently operates at its competence.

We test the efficacy of our model empirically on two simulated autonomous vehi-

cle domains, at different levels of reasoning abstraction, and demonstrate that the

competence-aware system can efficiently reach high level-optimality, optimizing the

trade-off between its own autonomous operation and human assistance, and leading

to less burden on the human and a more cost-effective overall plan.

Finally, we show that our approach extends to the partially-observable setting in

a well-defined way by conditioning competence on the most recent observation, rather

than the underlying state or current belief state, and provide empirical evidence from

simulation that demonstrates that a partially-observable CAS can efficiently learn to

operate at its competence nearly 100% of the time.
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CHAPTER 4

IMPROVING COMPETENCE VIA
ITERATIVE STATE SPACE REFINEMENT

In Chapter 3, we introduced the competence-aware system (CAS) as a planning

framework for semi-autonomous systems to reduce unnecessary reliance on human

assistance by learning their own competence and accounting for it during planning.

However, while the CAS model enables a semi-autonomous system to optimize its

autonomy over time, it is limited by the features in its fixed model. As discussed

previously in this thesis, many problems in the open world are too complex to fully

specify a priori all features that will be relevant over the course of the system’s deploy-

ment, even with expert knowledge of the domain. This is particularly prevalent with

features that may not directly impact the technical functionality of the autonomous

agent (e.g., its domain model) but rather are factors that influence the human’s feed-

back, which may encompass additional features that affect other elements such as

comfort or social behavior [13, 74].

Preliminary analysis of override data collected on a real autonomous vehicle pro-

totype from two different safety drivers corroborates this claim. Here, the AV could

either be in supervised autonomy, or could defer full control to the human; overrides

corresponded to braking or accelerating registered by the human driver while the

AV was operating in supervised autonomy. The results of this analysis can be seen

in Figure 4.1 and Table 4.1 where we provide the correlation matrix for each type

of override with every feature used by the CAS model implemented on the AV for

each human safety driver. These results demonstrate two important facts. First,

the difference in correlation matrices between Human 1 and Human 2 illustrate that
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Human 1 Human 2

F̂ σ1 σ2 σ3 σ1 σ2 σ3

f1 0.171 -0.146 -0.055 0.222 0.255 -0.410

f2 0.293 -0.158 -0.209 -0.037 -0.109 0.111

f3 -0.399 0.267 0.220 -0.212 -0.197 0.361

f4 0.375 -0.335 -0.103 0.384 -0.170 -0.313

f5 -0.379 0.257 0.205 -0.372 0.311 0.208

f6 0.064 0.043 -0.141 0.045 -0.183 0.069

f7 -0.030 0.118 -0.104 0.044 -0.019 -0.036

f8 0.179 -0.110 -0.112 0.044 -0.019 -0.036

f9 0.085 -0.093 -0.002 -0.062 0.027 0.051

f10 0.108 -0.151 0.038 -0.237 0.104 0.193

f11 0.175 -0.059 -0.168 0.325 0.295 -0.549

Table 4.1: The correlation matrices of each override signal with each feature.

feedback, and the features that determine that feedback, can vary significantly be-

tween humans, meaning there is no “one-size-fits-all” feedback model. Second, the

lack of any feature having a correlation coefficient greater that ±0.4 indicates that it

is challenging, even with expert input, to capture all of the causal features used by all

humans a priori. If the CAS model does not represent certain features in its model

that are used by the human in deciding their feedback signals (either explicitly or

implicitly), the human’s feedback may appear inconsistent or even random, leading

to low competence and a potentially high degree of improper reliance on the human

stemming from an underspecified model. Consequently, for these systems to be most

effective in the real world it is important that they are equipped with a means of

updating their model online to better align with the human’s model so that they can

better predict the correct feedback likelihoods.
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Figure 4.1: The correlation of each override signal (σi) and each feature (fj) for
Human 1 (blue) and Human 2 (orange).
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4.1 Improving Competence Online

To address this shortcoming, we propose in this chapter a method for providing

a CAS the ability to improve its competence over time by increasing the granularity

of its state representation through online model updates [8]. The approach works by

identifying states that are deemed indiscriminate under the system’s current feedback

profile, i.e., unable to predict human feedback with high confidence, and attempts to

find the feature, or set of features, that is available to the system but currently unused

that best discriminates human feedback, leading to a more nuanced drawing of the

boundaries between regions of the state space with different levels of competence. An

example of this process can be viewed in Figure 4.3. The approach leverages the CAS

model in two critical ways. First, it exploits existing information available in a stan-

dard CAS model in the form of human feedback to identify where new features should

be added, adding no additional work to the human. Second, it exploits key proper-

ties of the human-agent interaction to avoid needing to directly alter the transition

function or reward function, modifying only the state space directly. Consequently,

the entire process can be performed online and fully autonomously.

Example 5. Recall the scenario in our running example, where the AV (blue) must

overtake an obstacle blocking its lane (red) by driving into the oncoming traffic’s lane

(yellow). Now, consider the existence of a trailing vehicle (or vehicles) waiting behind

the AV (green); the existence of trailing vehicles may not be included in the state

representation of the domain model as they do not affect the decision making of the

AV from a technical perspective (that is, they do not influence the success or failure

probabilities of each action, do not influence the safety of the actions, and short of

rear-ending the AV do not directly alter the AV’s state), and serve only to increase

the state space of the planner. However, it may be the case that the human in the

AV is actually more likely to override safe behavior, such as waiting if there is an
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Figure 4.2: Illustration of Example 5

oncoming vehicle, and take manual control of the vehicle due to the social pressure

exerted by the trailing vehicle’s existence.

4.1.1 Indiscriminate States

Let S be a competence-aware system. In practice, when a robotic system is

deployed into the open world, both the exact environment the system will operate in,

and the human authority it will interact with, may not be known a priori. Naively

including all possible features available to the system from perception or external

sources in its planning model may make planning intractable without benefit in the

case of many of the features that do not add useful information for decision-making

and serve only to increase the number of states. Hence, we assume that S has

available to it a complete feature space that can be partitioned into an active feature

space that is used by S and an inactive feature space that is not yet used by S in its

planning model. However, as S receives additional feedback over time, S will learn

to exploit some of the inactive features, adding them to its state representation to

more effectively align its features with those used by the human authority.
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Definition 22. Given the complete feature space F = {F1, F2, ..., Fn} available

to S, the active feature space is denoted as F̂ ⊆ F , and the inactive feature

space as F̆ = F \ F̂ .

We say that a state s ∈ S is indiscriminate if, intuitively, the active feature space

is missing features needed to properly discriminate the feedback received from the

human for the state s. The condition states that for at least one action there must be

no feedback signal that, under the system’s current feedback profile, can be predicted

with high probability. The intuition is that, under the assumption of ϵ-consistency

and a ground truth feedback, situations where the agent cannot predict feedback with

high probability indicate that a feature may be missing from its state representation

causing the probability mass to be normalized over the remaining features in its active

feature space. We formalize this below.

Definition 23. Let the human authority H be ϵ-consistent for ϵ > 1
|Σ| . A state s ∈ S

is indiscriminate if there exists at least one action, a ∈ A, where for every feedback

signal σ ∈ Σ, we have the following:

λ(σ | s, a) ≤ 1− δ δ ∈ (1− ϵ, 1− 1

|Σ|
) (4.1)

Here, δ is referred to as the discrimination slack, and determines the predictive

confidence needed for a state to be declared indiscriminate; the lower the slack is set,

the higher the confidence needed. The discrimination slack serves to provide a formal

trade-off mechanism between increasing the complexity of the underlying planning

model, and the completeness of the competence-aware model. The determination of

how to set δ may be done via expert knowledge, offline evaluations, or could even

be tuned online in a dynamic fashion. To avoid considering states that have a very

small amount of data (and hence may be deemed “indiscriminate” due to chance),
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we consider only states for which the system has collected a sufficient amount of data

(determined simply via a fixed threshold, or based on some statistical analysis).

4.1.2 Feedback Discriminators

Given the notion of an indiscriminate state, we can now define the central concept

of this approach. A discriminator is, intuitively, any subset of the inactive feature

space that could help the agent to better discriminate feedback from H for an in-

discriminate state. For example, consider the autonomous vehicle agent in Running

Example 5 that initially does not consider the existing of a trailing vehicle in its active

feature set. Suppose that the human always overrides the vehicle and takes manual

control when there is a trailing vehicle if the AV waits for too long before proceeding

around the obstruction to maintain safe operation. Without this additional feature in

its model, the agent may perceive having received “noisy”, or even seemingly random,

feedback from the human authority, leading to a feedback profile with low predictive

capabilities and a poor competence model, resulting in the AV conservatively trans-

ferring control to the human when performing an overtake in situations where it was

actually competent to act autonomously. By providing the agent with the ability to

add these features to its active feature space, the agent’s new feedback profile will be

able to predict the correct feedback signal in more situations with higher probability.

Definition 24. A discriminator is any subset of F̆ that, if added to F̂ , will improve

the performance of λ by at least α, for some α ∈ (0, 1).

The larger that α is set, the stricter the requirement is on including a new fea-

ture. Determining α can be as simple as setting it to be a fixed threshold, or can

be via more sophisticated means such as based on the value of information or other

information-theoretic metrics. The methodology for selecting discriminators is well

explored in the feature selection literature and not the focus of this contribution; stan-

dard approaches include mRMR [83], JMI [22], and correlation-based methods [106].
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Figure 4.3: An illustration of our iterative state space refinement approach in a sim-
ple navigation task. Colored blocks represent different colored doors. Each colored
path corresponds to the optimal path under a different granularity of the state space
representation. An abstract representation of the state space at different granularities
of refinement can be seen in the middle row. As features are identified and added to
the system’s state space representation, the system can better learn its true compe-
tence in a larger portion of the state space, as depicted in the bottom row, enabling
it to take paths that better exploit the trade-off between autonomous operation and
human assistance.

We define a discriminator as a subset because there may be causal features which

if added individually do not help to discriminate the human’s feedback, but when

added together do (i.e., they are only meaningful in the context of each other). The

size of feature subsets to consider when selecting potential discriminators is therefore

an important parameter of the approach.

4.2 Iterative State Space Refinement

In this section, we present the main methodological contribution of this chapter,

which is a general algorithm we call iterative-state space refinement.

Algorithm 1 presents the pseudocode of one iteration of our approach for improv-

ing the competence of a CAS via iterative partitioning of the state space by adding

new features to the state representation over time. The algorithm first identifies the
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Algorithm 1: Single–Step State Space Refinement
Input: A CAS S, dataset D, slack δ, and threshold M
Result: An updated CAS S

1 S
∗ ← {}

2 for s ∈ S.GetStates() do
3 for a ∈ S.GetActions() do
4 if maxσ∈Σ λ(σ|s, a) ≤ 1− δ and
5 maxσ∈Σ Pr[Obs(D(s, a))|σ is ground truth] < pϵ
6 S

∗ ← S
∗ ∪ {s}

7 if S
∗
= ∅

8 return S

9 s∗ ∼ S
∗

10 Dtrain,Dval ← Split(D)
11 D ← FindDiscriminators(Dtrain, F̆ , s)
12 for d ∈ D do

13 λd ← train(F̂1 × · · · × F̂|F̂ | × d,Dtrain)

14 d∗ = argmaxd∈D Evaluate(λd, Dval)
15 if Validate(d∗,S) is True

16 F̂ ← F̂ ∪ d∗

17 S ′ ← Update(S)

18 return S ′

current set of indiscriminate states (Lines 1-6). To avoid labeling sparsely sampled

state-action pairs as indiscriminate through chance, we limit the process to only con-

sider certain state-action pairs. In particular, only those where the probability of

having observed all labeled instances of that element in the existing dataset D, re-

ferred to in Algorithm 1 as Obs(D(s, a)), is at least some threshold pϵ conditioned on

the assumption that there exists a true correct feedback signal returned with proba-

bility at least ϵ by the human for every state-action pair (Line 5). Next, the algorithm

samples an indiscriminate state from the set (Line 9) and identifies the most likely

discriminators for that state using any standard feature selection technique (in our

case, we used mRMR [83] with the FCQ methodology [126]) (Line 11). For each

potential discriminator, a new feedback profile is trained using a portion of the full
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dataset with the discriminator temporarily added to the active feature set (Lines 12–

13). The discriminator that leads to the best performing feedback profile, in our case

the highest Matthews correlation coefficient, is selected for validation (Line 14). If

validation is successful, the discriminator is added to the active feature set and the

system is updated (Lines 15–17).

A natural question is whether in the process of adding a discriminator so as to

make some indiscriminate states discriminate, we will, as an unintended by-product,

make some discriminate state indiscriminate.

Remark 1. Adding a discriminator will never cause a discriminate state to become

indiscriminate.

While possibly not obvious a priori, this remark is trivially true. Observe that

any given discriminate state will either be affected by the discriminator or it will

not. If it is not affected, the feedback profile for the state will not change. If the

state is affected, then the initial state in question by definition no longer exists. More

importantly, we want to ensure that every state is eventually properly discriminated

given a sufficient set of features.

The following proposition states that if every feature that the human uses to

determine their feedback is available to the robot, then there must be a point in

time at which the robot has fully discriminated all states, and no state will become

indiscriminate past that point.

Proposition 4. Let It be the number of indiscriminate states at time t, and let λs,a
t

be the random variable representing λ(s, a) after having received t feedback signals

for (s, a) where each signal is sampled from the true distribution λH(s, a). If FH ⊆ F ,

H is ϵ-consistent, δ > 0 and no (s, a) ∈ S×A is starved, then there exists some t∗ > 0

for which It′ = 0 for all t′ > t∗.
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Proof. First, observe that as FH ⊆ F , if there is a point at which FH ⊆ F̂ , then be-

cause the sequence {λs,a
t } converges in distribution by Proposition 3, limt→∞ Pr(|λs,a

t −

λs,a
H | > γ) = 0 ∀γ > 0, (s, a) ∈ A × A. Hence, there exists some t∗ > 0 for which

Pr(|λs,a
t − λs,a

H | > δ) = 0 at which point it is clear that no state will be indiscriminate

under δ. Consequently, for the claim to not hold, it must be the case that for every

t > 0, FH \ (FH ∩ F̂ ) ̸= ∅. Pick such a t, sufficiently large, for which there is an

indiscriminate state s ∈ S. There is some subset, G ⊆ FH \ (FH ∩ F̂ ), which is a

discriminator of s. As this holds for all t > 0 and s ∈ S, we either reach a satisficing

t∗ where FH\(FH∩ F̂ ) ̸= ∅, and hence are done, or where FH ⊆ F̂ , which contradicts

our assumption.

When using Algorithm 1, each time a new discriminator, d, is added to the active

feature set, the state space of the CAS is partitioned as seen in Figure 4.3, increasing

the total number of states by a factor of |d|. If the CAS’s true underlying transition

function is independent on the discriminator, d, i.e., the features only affect the

human’s feedback function λ and transition function τH, then the process can be run

without any additional information or intervention as λ and τH are computed directly

from observed data, and are parameters of the function T . In other words, T will

not have to be updated directly at any point, and the algorithm can be run in a fully

unsupervised capacity, while ensuring that the transition function is correct on all new

states in the new partitioned state space. However, if the true transition function is

dependent on the discriminator, d, for some states d(s) (denoting the set of states

derived from partitioning the state s with discriminator d), the algorithm can still be

run, but the conditional affect of d on T for each state in d(s) will be marginalized out.

In such a case, the transition function is no worse; rather, the model simply did not

have the feature expressivity prior to adding the discriminator d to properly express

the model’s transition imprecision in certain scenarios. Moreover, it is possible to use

our approach in an offline capacity as a means of identifying the missing features for
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system designers, and subsequently improving the system’s competence by directly

updating the transition and cost functions (e.g., via software updates).

4.3 Evaluation

We evaluated our iterative state space refinement approach (Algorithm 1) on

both of the domains described in Chapter 3, where the key difference is that, here,

the CAS model is missing features in its initial active feature space that do not

impact its transition model (that is, what it is technically capable of doing), but

impact the human’s feedback signal likelihoods regardless. We test our approach for

multiple different simulated humans, each of whom uses different auxiliary features

in determining their feedback.

To evaluate the iterative state space refinement method, we implemented Algo-

rithm 1 and compared the performance of a CAS with Algorithm 1 and a CAS

without it on both of the domains defined above (autonomous vehicle navigation and

autonomous vehicle obstacle passing). In both experiments we considered different

human users of the autonomous vehicle system, each of whose feedback was condi-

tioned not just on the features already used by the CAS model that directly impacted

the CAS’s technical performance (i.e., the existence of a pedestrian, an occlusion, etc.)

but additionally on auxiliary features, which are tracked by the autonomous vehicle

but not included in its a priori planning model, as the features in question are dif-

ferent for each person, and do not (directly) impact the transition and cost dynamics

of the system.

In the AV navigation domain, the inactive feature set included the following fea-

tures: whether the AV has a trailing vehicle, a vehicle to its left, or a vehicle to its

right, whether the AV has been “waiting” to move, whether it is daytime or night-

time, and whether it is sunny, rainy, or snowy. In the AV obstacle passing domain,
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we consider the same inactive features except whether there is a vehicle to the AV’s

left or right, as the problem is for single lane roads.

In the AV navigation domain, we consider two “people” implemented as soft-

ware agents: the first person is cautious with low trust in letting the AV operate

in challenging environmental conditions (even though they do not impact the AV in

simulation), for instance taking over control when the system attempts an overtake

on a road segment when it is either snowing or rainy and night time. The intuition

here is that the weather conditions impacts the human’s ability to fully assess the

situation and hence the veracity of the AV’s actions, prompting them to take control

of the vehicle themselves. We refer to them as “Cautious”. The second person is mo-

tivated by more social factors, and is more likely to take control of the vehicle when

there is a trailing vehicle the AV is blocking, and or when the AV has been stopped

for too long (either on a road segment behind an obstruction, or at an intersection).

We refer to them as “Conscientious”.

In the AV obstacle passing domain, we consider three “people” implemented as

software agents: the first is motivated by the same features as the first person above;

we again refer to them as “Cautious”. The second person is motivated by whether

there is a trailing vehicle that they are blocking, prompting them to take control if the

AV waits to long to attempt its overtake; we also refer to them as “Conscientious”.

The third person is in a rush and takes over control if the AV is waiting too long or

doesn’t go when it has priority; we refer to them as “Rushed”. Each simulated person

is perfectly consistent up to some fixed noise ϵ, within which they return uniformly

random feedback.

We note that in both domains, some inactive features are never used by any of the

humans simulated, and hence we aim to show that our approach does not simply “pick

all features” in the inactive feature space. Additionally, one important distinction

between the two domains is that the additional inactive features may change at each

88



new state in the AV navigation domain, but are fixed in the AV obstacle passing

domain at the beginning of each episode due to the short time horizon of the problem.

Results

Figure 4.4 shows the results of our experiment, comparing the performance of

a CAS with and without the iterative state space refinement (ISSR) approach (Al-

gorithm 1) implemented, on the AV navigation domain with random routes each

episode. Figure 4.5 shows the results for the AV obstacle passing domain. In Fig-

ure 4.4, we can see that the CAS with the ISSR implemented converges to higher

level-optimality on all state in the domain, and 100% level-optimality on all states

visited each episode, leading to far fewer feedback signals from the human, for both

human authorities. Additionally, in both cases, the only features added to the active

feature space where the features in the inactive feature space that were actually used

by the humans in determining their feedback.

Figure 4.5 shows the results for the AV obstacle passing domain. Note that

we include results on all reachable states here because the additional features stay

fixed through each episode, whereas in the AV Navigation domain, they can change

throughout an episode and the transition dynamics are (by design) not modeled by

the agent.

There are several key takeaways from these graphs. First, if we consider the level-

optimality over all states in the domain, it is higher for the ISSR-CAS in the cases of

all three human authorities, than for the CAS without ISSR active, indicating that

our approach is enabling the CAS to generalize its competence model to a larger

portion of the (unvisited) state space. We remark that by adding features in order to

refine the state space, the number of states increases multiplicatively with each feature

added, meaning that not only is the ISSR-CAS level-optimal in a larger portion of

the state space, that directly translates to being level-optimal in a larger number
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(a) Person 1 (Cautious)

(b) Person 2 (Conscientious)

Figure 4.4: Iterative state space refinement results for two human authorities in
the autonomous vehicle navigation domain, showing the level optimality after each
episode as a function of the number of feedback signals with (left) and without (right)
Algorithm 1 implemented. Colors indicate the level-optimality over states visited
during each episode (green) and the full state space (blue).
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(a) Person 1 (Cautious)

(b) Person 2 (Conscientious)

(c) Person 3 (Rushed)

Figure 4.5: Iterative state space refinement results for three human authorities in
the autonomous vehicle obstacle passing domain, showing the level optimality after
each episode as a function of the number of feedback signals with (left) and without
(right) Algorithm 1 implemented. Colors indicate the level-optimality over states
visited during each episode (green), all reachable states each episode (red), and the
full state space (blue).
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Figure 4.6: Left : The three paths taken by the robot. Right : The robot and the
physical domain.

of unique situations. More important are the results depicting the level-optimality

over all visited states each episode; here, we see that this reaches 100%, or near

100%, for all 3 human authorities with fewer than 50 feedback signals. However, we

observe an interesting phenomenon for the CAS without ISSR active; namely, we

see several clusters of green at the far right (at which point no additional feedback

signals were received). This phenomenon is due to the fact that the CAS learns to

operate in l0, that is, full human control, in a large portion of the statespace because

it cannot properly discriminate the feedback received from the human conditioned

on features in the inactive feature space, which is correct for certain settings of these

features (which, to reiterate, are set and fixed at the start of each episode), but not

for others. However, because the state space is not refined enough to consider these

decision boundaries, the CAS learns to operate at the incorrect level of autonomy

(relative to the full feature space) in certain conditions. These results demonstrate

that the ISSR method is effective at enabling a competence-aware system to improve

its competence online when missing from its active feature space features used by its

human authority.

Additionally, we implemented our approach on a TurtleBot3 mobile robot [91] in

a small grid-like domain with two types of door depicted by the green and red tape.

92



The results can be seen in Figure 4.6 where we depict the three distinct paths taken

by the robot over time. The red line represents the first path taken by the robot—the

robot, knowing nothing about the differences between doors, takes the shortest path

to the goal requiring it to request human aid to open a pull door. The blue line

represents the path taken by the robot after introducing the new feature doortype—

the robot now travels through the first push door, knowing that the bottom pull door

is not openable by it, and attempts to open door 3 as it has not determined with high

confidence if doortype is the determining factor, or if it simply is disallowed from

opening door 4 specifically. After receiving a disapproval, it goes up to door 1, a push

door, which it is allowed to open. The green line represents the final path—the robot

has now identified that doortype is the determining factor, and takes the path that

only interacts with push doors, despite being longer than the other two.

4.4 Conclusion

Preliminary internal testing on an autonomous vehicle prototype suggests that de-

signing a perfectly specified competence-aware system for real-world, highly-unstructured

domains is a non-trivial task. Even with expert domain knowledge, an initial model

may be missing features used by the human in determining their feedback for the

CAS. To avoid solving this naively with the inclusion of all possible system features

in the CAS’s domain model (many of which would serve no functional purpose but

would cause the state space to explode and render planning intractable), we devise

the iterative state space refinement approach. Described in Algorithm 1, the approach

provides a competence-aware system the means to gradually refine its state represen-

tation online, enabling it to better identify the boundaries between state-action pairs

with difference competences. This ability is particularly relevant in the context of

systems deployed in the real world where human feedback may be conditioned on

features that are unspecified or unknown a priori. Such features may not impact the
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original stated objectives of the system, but could influence unstated human pref-

erences, trust, safety, and social conscientiousness. We prove that, when possible,

this approach is guaranteed to reach a point where all states are discriminated, and

demonstrate empirically that a CAS with this approach implemented far outperforms

a CAS without it when the CAS cannot properly learn from human feedback due to

missing state features. In particular, the modified CAS requires both fewer total feed-

back signals from the human, placing less burden on the human, and is more sample

efficient with the feedback it receives in learning its competence, leading to a higher

level-optimality for the CAS.
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CHAPTER 5

CONTEXTUAL COMPETENCE AND
HETEROGENEOUS HUMAN OPERATORS

In Chapter 3, we introduced the competence-aware system framework conditioned

on several strong assumptions about what we referred to as the “human authority”.

Namely, (1) that there is only a single human authority; (2) that the human is

perfectly consistent; and (3) that the human is perfectly safe with invariant perfor-

mance. However, humans are not perfectly consistent and their performance may

vary with both skill, state, and context. Consequently, in real-world domains where

these assumptions do not hold, the applicability of the base CAS framework may be

diminished, prompting a need for extending the framework in such a way that it can

handle relaxing the stated assumptions. In fact, accounting for the human’s state and

performance is particularly important in the pursuit of competence modeling given

that we specifically measure competence as a function of the human-agent system

as a whole, rather than simply as a function of the autonomous agent’s underlying

technical capacity, and is hence intrinsically conditioned on the capacity of the agent

to interact with the human and vice-versa.

Consequently, in this chapter we consider a relaxed version of the problem setting

where there may be more than one human operator and where each operator main-

tains their own (possibly unique) internal state that affects their performance and

interactions with the agent and changes stochastically over time conditioned on both

the behavior of the agent as well global contextual features that are independent of

the agent’s behavior [69]. Our work is motivated by insights from Costen et al. [32]

who proposed what they call a stochastic-operator semi-autonomous system (SO-SAS)
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which is a direct extension of the SAS model [124] wherein each operator (assumed,

but not required, by Costen et al. to all be human but one, the autonomous agent)

maintains a partially observed internal state that changes stochastically according to

a known Markov model. Notably, Costen et al. focused specifically on the shared-

autonomy problem of selecting the optimal operator at each timestep to be in control

at each timestep. However, the proposed SO-SAS model does not consider several

features that are integral to the CAS framework. First, the authors do not consider

multiple levels of autonomy, proposing an all-or-nothing operative control structure;

second, each operator behaves according to a fixed policy when in control; and third,

the reward function is independent of the operator (up to transition dynamics).

We propose an extension of the base CAS model that naturally handles the re-

laxed problem setting with multiple stochastic human operators and contextual com-

petence dependence, while still maintaining the same convergence guarantees and

demonstrating significant empirical improvements over the standard CAS model in

the given problem setting. In fact, we show that the CoCAS not only fully generalized

the CAS model, but also the SO-SAS model when each operator is fully observable.

5.1 Contextual Competence

In Chapter 3, we introduced the formal competence-aware system model for an

agent that had a domain model, D, an autonomy model, A, and a feedback model,

F , that was based on a single human authority, H. In this chapter, we do not make

any changes to either the domain model or the autonomy model, but instead extend

the feedback model in the following ways.

Let H = {H1, ..., HN}, for N ≥ 1, be a set of human operators. Each human

operator, Hi, is parameterized at each timestep by an operator state θji drawn from

a set of possible operator states ΘHi
= {θ1i , ..., θmi }, with m ≥ 1. In general, each

ΘHi
may be unique; however, for the sake of notational clarity, we will henceforth
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simply write ΘH by observing that we can define ΘH =
⋃

i=1:N ΘHi
in the case where

the ΘHi
are non-identical. Here, ΘH encodes local information about each individual

human operator, such as whether they are tired or active, their current capabilities

and performance as a tele-operator or authority, or the quality of their connection to

the autonomous agent when tele-operating.

In addition to the the human state information, we augment the feedback model

with an additional parameter θC ∈ ΘC which encodes additional contextual informa-

tion about the world that is relevant to the operators’ feedback model. In general,

ΘC represents global information about the world or the set of operators as a whole,

as well as other external contextual information that may impact the overall system’s

competence. For instance, the current active load by a fleet of competence-aware

systems on the active human operators, which operators are busy or available, the

global weather or environmental conditions, etc.

Example 6. A fleet of semi-autonomous vehicles are used to taxi passengers around a

city and are supported by a group of remote human operators. The semi-autonomous

vehicles may each require tele-operative support in different capacities and for dif-

ferent durations to handle challenging, hazardous, or socially ambiguous situations

that constrain the capacity of their autonomous behavior. For example, fully tele-

operative control by a remote human may be necessary to complete a challenging

maneuver such as overtaking a lane obstruction in a narrow road, or to to approve re-

routing when the passenger does not appear to be around to be picked up. However,

each tele-operator’s availability and internal state will vary with time and context

such as their current workload or time spent working, and their feedback may vary

with global contextual information such as the weather or time of day which may

impact their trust in the vehicle and risk-tolerance.
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5.1.1 Extending the Feedback Model

We represent the contextual operator model, F+, by the tuple ⟨SH , TH ,Σ, λ, ρ, τH⟩

where

• SH = ΘN
H × ΘC is a finite set of contextual-operator states represented by a

human-operator state vector, ⟨θ1H , ..., θNH ⟩ ∈ ΘN
H , representing the state of each

human operator, and a contextual state parameter, θC ∈ ΘC , representing any

additional global information,

• TH : SH ×S×L×A×L×SH → [0, 1] is a transition function representing the

probability of transitioning from contextual-operator state sH to contextual-

operator state s′H conditioned on taking action a ∈ A at level l ∈ L in state

s ∈ S having just operated in level l′ ∈ L,

• Σ = {σ1, ..., σk} is a finite set of feedback signals that can be received from any

of the N operators,

• λ : SH×S×L×A×L → ∆|Σ| is a feedback model that represents that probability

distribution over feedback signals that can be received when performing action

a ∈ A at level l ∈ L in state s ∈ S having just operated in level l′ ∈ L,

conditioned on contextual-operator state sH ,

• ρ : SH ×S×L×A×L → R+ is a human cost function that represents the non-

negative cost to the current active human operator of performing action a ∈ A

at level l ∈ L in state s ∈ S having just operated in level l′ ∈ L conditioned on

the contextual-operator state sH ∈ SH , and

• τH : SH×S×A×S → [0, 1] is the human transition function that represents the

probability of transitioning from domain state s ∈ S to CAS state s′ ∈ S when

performing domain action a ∈ A with the current human operator in control of

the system, conditioned on the current contextual-operator state sH ∈ SH .
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Figure 5.1: Illustration of the information flow in a CoCAS.

A contextual competence-aware system (CoCAS) is the natural extension to the

CAS model as defined in Chapter 3, where the feedback model, F , is replaced with the

contextual operator model, F+. There are several notable extensions in the represen-

tational power of the CoCAS model over the base CAS model. Unlike the CAS model

which assumes a single, fixed, stationary human who is always available, the CoCAS

model allows for us to represent multiple, stochastic operators, with dynamic con-

trol states when computing the competence of the overall system. By incorporating

the contextual-operator states into the state representation, a CoCAS can also proac-

tively plan in a way that globally optimizes (in expectation) its interactions with each

operator over the course of executing its task. We formally define a CoCAS below.

Definition 25. A contextual competence-aware system (CoCAS), C, is represented

by the tuple ⟨S,A, T ,R, γ⟩, where

• S = SH × S × L is a set of factored states such that S is the set of domain

states and L is the levels of autonomy,

• A = A×L is a set of factored actions such that A is the set of domain actions

and L is the levels of autonomy,
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• T : S × A × S → [0, 1] is a transition function representing the probability of

transitioning to state s′ ∈ S having taken action a ∈ A in state s ∈ S,

• R : S × A → R is a reward function representing the immediate reward for

taking action a ∈ A in state s ∈ S, and

• γ ∈ (0, 1] is the discount factor.

Example 7. For example, the transition function from Chapter 3, Example 3 would

be modified in the following way:

T (s, a, s′) =



τH((s, sH), a, s
′), if l = l0,(

λ(⊕|s, a)T (s, a, s′) + λ(⊖)[s = s′]
)
∗TH(s, a, s

′
H), if l = l1,(

λ(∅|s, a)T (s, a, s′) + λ(⊘|s, a)τH(s, a, s′)
)
∗TH(s, a, s

′
H), if l = l2,

T (s, a, s′)∗TH(s, a, s
′
H), if l = l3,

where bold text here is used for emphasis and clarity.

5.1.2 Properties

Definition 26. Let λH : S × A → ∆|Σ| be the stationary distribution of feedback

signals for the N operators, H. The competence of CoCAS S, denoted χS , is

a mapping from S × A to the reward-maximizing level of autonomy given perfect

knowledge of λH. Formally:

χS(s, a) = argmax
l∈L

q∗(s, (a, l);λH) (5.1)

where q∗(s, (a, l);λH) is the cumulative expected reward under the optimal policy π∗

when taking action a = (a, l) in state s conditioned on the feedback distribution λH.
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While the CoCAS model offers additional representational power, it is important

to show that the same theoretical properties of a normal CAS model hold for a

CoCAS as well. Indeed, the key observation to show that the convergence guarantees

do hold for a CoCAS is that the additional model information (i.e., the addition

of multiple stochastic operators who may each have their own feedback profiles and

cost functions) is captured by SH , which is included in the state representation S.

Hence, under the assumption that every (s, a) ∈ S × A (with the redefined CoCAS

sets) is visited sufficiently in the limit, the system will still learn the optimal level of

autonomy for each operator in each contextual-operator state.

Proposition 5. Let S be a CoCAS and let λs,a
t be the random variable representing

λ(s, a) after having received t feedback signals for (s, a) where each signal is sampled

from the true distribution λH(s, a). As t→∞, if no (s, a) is starved, S will converge

to λ-stationarity (see Definition 18).

Proof. Let the expected value of sample information (EVSI) on σ ∈ Σ for (s, a) to

be defined as in Definition 17. Fix (s, a). As each feedback signal for (s, a) is drawn

from the true distribution λH(s, a) i.i.d, then by a straightforward application of the

law of large numbers, it follows that the sequence {λ(s,a)
t } will converge in distribution

to λ
(s,a)
H = E[λH(s, a)]. Hence, it follows that limt→∞ Pr[|λs,a

t − λs,a
H ]| > ϵ] = 0 ∀ϵ >

0. Consequently, as t → ∞, the probability that λs,a
t = λs,a

H defines a Dirac delta

function with point mass centered at λs,a
H . The rest of the proof follows the proof of

Proposition 1.

Proposition 6. Let S be a CoCAS that follows any level-exploration strategy that

ensures a non-zero probability that all reachable levels of autonomy are explored and

switches to exploitation once λ-stationarity has been reached, and where χS(s, a) is

reachable from κ0 for all (s, a) ∈ S×A. Then if no (s, a) is starved, as t→∞, S will

converge to level-optimality.
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Proof. The proof follows that of the proof of Theorem 2. By Proposition 5, S will

reach λ-stationarity, which ensures that for any s ∈ S and action a ∈ A the optimal

level of autonomy l∗ ∈ L is known in the limit, and hence we can determine in the

limit the competence χ(s, a) for all s ∈ S and a ∈ A so long as that level is explorable

by the system (that is, both allowed under the human’s true autonomy profile and

reachable from the initial autonomy profile) with non-zero probability, which is true

by assumption.

Remark 2. Any CAS S can be modeled as a COCAS C.

This remark is straightforward to observe simply based on the definition of the

contextual operator model, F∗, by fixing |ΘH| = 1, |ΘC | = 1, and N = 1.

Proposition 7. Any fully-observable SO-SAS can be modeled as a CoCAS.

Proof. Let M = ⟨SE, X, s0, b0, A,Ω, T, O,R, γ⟩ be a fully- observable SO-SAS, i.e., so

Ω = SE ×X where SE is the environment state space and X = X1× · · · ×XN is the

operator profile state space, and the rest is as defined in [32]. Now, let L = {l1, ..., lN}

be the levels of autonomy where li represents full control by the ith operator, where the

first operator is the autonomous agent, and let the CoCAS domain action set be ∅ such

that A = L ∼= A i.e., the selection of which operator to be in control. Let S = SE and

SH = X, so that S = SH×S×L = X×SE×L, and assume by construction that L does

not impact either T or R, so that we can simplify that S = SH×S. Then we have that

T : S×A→ ∆S ∼= T : (SE×X)×A→ ∆(SE×X) ∼= T : (SE×X)×A×(SE×X)→ [0, 1],

and R : S × A→ R ∼= R : (SE ×X)× A→ R.

5.2 Evaluation

To test the contextual competence-aware system, we implement anmodified ver-

sion of the autonomous vehicle navigation domain used earlier in this thesis. In

this domain, an autonomous vehicle (AV) is tasked with picking up and dropping
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Figure 5.2: Illustration of the abstracted map for the autonomous vehicle delivery
service domain.

off goods around an area, where its objective is to reach its destination in the cost

cost-effective manner. There are two types of state: node states representing inter-

sections, and edge states representing road segments. Node states are represented by

the tuple ⟨ID , p, o, v, θ⟩, and edge states by the tuple ⟨u, v, θ, o, l, r⟩. Here, ID is the

ID of the node, p is 1 if there are pedestrians or else 0, v is the number of relevant

other vehicles, θ is the AV’s heading, u and v are the start and end node IDs, o is 1

if there is an obstruction in the AV’s lane or else 0, l is the number of lanes on the

road, and r denotes road restrictions if any.

The AV drives autonomously (l0) but may seek assistance from human tele-

operators: requesting approval for certain actions (l1) or requesting full tele-operative

control of the vehicle (l0) (which may be denied). We model the existence of two hu-

man operators: a local operator, Hl, and a global operator, Hg The local operator’s

connection is always stable allowing them to provide support for the AV in any capac-

ity requested; however the local operator may become busy assisting another vehicle

in the fleet when the demand is high. A global operator, however, is always avail-
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able, but their connection may be either stable or unstable. We additionally consider

contextual information, θC = ⟨d, t, w⟩ ∈ ΘC where d is the current AV demand, t is

the time of day, and w is the current weather condition. Hence we get that SH =

{θbusy, θactive}× {θstable, θunstable}× {Hl,Hg}×ΘC . When stable, the global operator

can provide verification for actions with consistency 0.8 consistency and full tele-

operation in certain non-challenging conditions; when unstable, the global operator

can only provide verification for actions with consistency 0.7. We also require that

the AV transfer control to a tele-operator when driving on roads that are demarcated

as pedestrian zones or school zones.

We define TH as follows: Hl can become busy or available with probabilities

1− 0.5d and 0.5d at each step respectively. Note that, when there is zero demand, Hl

is always available. At each step, Hg’s connection quality changes with probability

0.25 and otherwise remains the same. We model the human cost function, ρ, to be

based off of the expected opportunity cost incurred when the operator helps the AV

and hence is unavailable to help another vehicle in the fleet. We apply this cost only

to the local operator whose capacity is limited, and scale by the current fleet demand,

d, but apply no such cost to the global operator, as we assume there is a sufficient

supply to cover all demand at the lowered level of assistance. However, there is always

a small baseline cost of requesting a transfer of control.

Results

In our experiments, we simulate the performance of five different models to com-

pare as baselines against the CoCAS model: (1) Operator, which allows for no auton-

omy throughout execution and is instead performed entirely by a human operator who

can change during the task’s execution; (2) R-SO-SAS, which randomly selects the

operator (one of which is the autonomous agent) uniformly at each time step, where

each operator acts on a fixed, preo-computed policy; (3) SO-SAS, which follows the
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Operator R-SO-SAS SO-SAS C-SO-SAS CAS CoCAS

Route 1 67.09(±11.15) 52.20(±43.73) 42.08(±6.20) 44.51(±4.59) 41.40(±6.62) 39.71(±4.00)

Route 2 207.31(±23.59) 223.07(±54.83) 168.76(±21.42) 155.65(±13.72) 176.00(±25.62) 142.85(±10.81)

Route 3 118.86(±17.69) 130.96(±45.69) 87.71(±9.51) 84.61(±8.52) 84.70(±77.90) 77.93(±7.56)

Route 4 169.39(±19.96) 166.83(±42.61) 127.44(±10.09) 118.18(±7.67) 129.00(±15.30) 112.87(±7.39)

Route 5 110.75(±17.83) 115.43(±42.86) 76.06(±9.32) 75.63(±6.35) 69.40(±4.79) 68.44(±3.89)

Route 6 182.83(±22.87) 202.17(±59.32) 136.38(±12.29) 127.65(±9.87) 132.00(±11.98) 119.98(±9.71)

Route 7 160.37(±21.78) 191.84(±62.82) 111.31(±12.42) 105.61(±11.80) 121.40(±24.77) 99.80(±9.55)

Route 8 96.91(±16.67) 193.44(±44.71) 72.96(±10.91) 68.29(±9.75) 65.80(±6.05) 61.35(±6.85)

Table 5.1: Results Summary from AV Delivery Domain.

model from Costen et al. [32], except that the operator state is fully observable at

each; (4) C-SO-SAS is the same as SO-SAS except that we add the cost function ρ

to the planning model; (5) the standard CAS model.

Table 5.1 shows the results of our model (CoCAS) against the same 5 baseline

models on the AV delivery service domain across 8 different routes. Unlike the UAV

domain, this is a purely cost-minimizing domain and, in the interest of space, we only

include the cumulative cost. In particular, we can see that the CoCAS outperforms

all other approaches in average cost across all 8 domains, and the lowest standard

deviation in all but one case as well (Route 8).

Figure 5.3 depicts the results from the learning simulation for both the CAS and

CoCAS over 200 episodes. In the left column of figures, the contextual information

for time of day and the weather conditions is fixed throughout all 200 episodes,

whereas the latter set the contextual information varies across episodes; in both cases,

the current AV demand changes dynamically during the episode at each time step.

Figures 5.3a and 5.3b depicts the level optimality of actions taken by the system

as a function of the number of queries made to the human. When the contextual

information is fixed, we see that the CAS is able to converge to 100% level-optimality,

although at a much slower rate than the COCAS, which reaches it very efficiently.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Comparison of the performance of the CAS and CoCAS over 200 episodes
in the AV Delivery Service domain with fixed contextual parameters (left) and dy-
namic contextual parameters (right).
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When it is not fixed, the CoCAS can still reach 100% level-optimality over actions

taken but the level-optimality of the CAS remains highly variable, and as low as 70%

due to its inability to appropriately learn across unmodeled contextual information

that alters the dynamics of the operators’ feedback and interactions.

Figures 5.3c and 5.3d depict the mean and standard deviation of the incurred cost

for both the CoCAS and CAS over the 200 episodes. Notably, the CoCAS quickly

minimizes the incurred cost in both scenarios, and even in the fixed-context case

where the CAS reaches 100% level-optimality in actions taken, the CoCAS is still

more cost-effective in its operation. When the contextual information varies, where

the CAS is unable to sufficiently learn its competence, its performance is both less

cost-effective than the CoCAS and significantly more noisy. From figures 5.3e and 5.3f

we see that the CAS queries the operators at roughly twice the rate as the CoCAS.

5.3 Conclusion

In this chapter, we introduce an extension of the CAS model, called a contextual

CAS, designed to handle multiple, heterogeneous stochastic human operators and

contextually-dependent competence modeling. We prove that the CoCAS is general

enough to capture both the CAS model and the fully-observable SO-SAS model [32]

(although the premise of each problem is distinct), but still retains the same theoret-

ical convergence guarantees as the standard CAS model. Additionally, we evaluate

the model empirically on a modified version of the autonomous vehicle navigation

domain used in prior chapters, demonstrating empirically that the CoCAS model

outperformed five different baseline models across all scenarios tested – the CAS

model, the SO-SAS model and 2 variants, and a human-operator-only baseline. We

show that not only does the CoCAS have lower average cost (and lower variance in

performance in all cases but one), but also reaches a higher level-optimality more effi-
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ciently than the standard CAS model when competence is conditioned on contextual

information and the operator state.

Although we focus specifically on a generalization of the human feedback model,

by integrating contextual information and stochastic operators into the competence-

modeling framework, we propose that a similar generalization could be made to the

autonomy model, most obviously by extending constraints on autonomy to depend on

contextual information and the state of the operators. Additionally, natural directions

for future research include extending the CoCAS to the partially-observable setting

both in the domain model as well as the operator model, learning the operator model

parameters online, and formulating the fleet-wide human-to-agent matching problem

to optimize fleet-wide operation.
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CHAPTER 6

LEARNING COMPETENCE FROM PROACTIVE
FEEDBACK

In prior chapters, we have implicitly assumed that all feedback generated by the

human from which a competence-aware system learns its competence model is gener-

ated reactively by the human. By reactive, we mean that the feedback is conditioned

on (or caused by) the most recent state-action pair in the agent’s trace. In fact, prior

work in learning from human feedback has always assumed that feedback is generated

either reactively, or retroactively [5, 110, 67, 65], but has ignored the possibility of

proactive feedback. That is, feedback that is conditioned on the possibility of inferred

future behavior of the agent given the human’s understanding of the agent’s behavior.

However, growing evidence suggests that humans’ cognitive control processes are

generally either reactive in response to rapid or unexpected changes in their external

contexts, or proactive as a means of strategically optimizing behavior resulting from

anticipated goal-relevant interference that they aim to ameliorate before occurring [18,

3]. Consequently, we believe that it is important to consider human interventions that

can be proactive to ensure that the agent learns the intended behavior.

In this chapter, we consider a simplified version of the CAS model where there are

only two levels of autonomy: no autonomy and full autonomy. As before, we assume

that the CAS has a known domain model with a well-specified reward function that

captures the nominal task objective, but no a priori knowledge of its autonomy profile,

which represents the state-action pairs that the CAS is disallowed from performing

autonomously. This can be viewed more simply as a set of constraints that may
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capture more nuanced aspects of the domain such as preferences or safety concerns

that may be challenging to specify exactly when designing the system.

We propose a constraint learning method for the agent that infers the true con-

straint set from human feedback in the form of sparse interventions, rather than more

costly, verbose forms of feedback like full or partial demonstrations. We consider this

supervise-and-intervene setting as interventions are a natural teaching framework for

a human, are easy to provide, and provide useful information to the agent as an indi-

cation of a potential constraint violation assuming a reasonable level of understanding

by the human [110].

We consider interventions rather than demonstrations because learning from demon-

strations limits the applicable set of domains to those where the human a human can

manually generate demonstrations for the robot. Furthermore, even when demon-

strations are available, it is possible for the agent to incorrectly infer the intended

behavior of the demonstration provider [5]. Likewise, a query-for-information frame-

work may be inefficient and onerous to the human if the agent frequently queries for

the existence of a non-existent constraint, or unsafe if the agent fails to query in the

presence of possible constraint violations.

The proposed approach makes minimal assumptions about the human, but enables

the agent to iteratively learn a constraint model and intervention model from interven-

tion data using a data aggregation approach [95]. Additionally, we use uncertainty-

based incentives to balance exploration and exploitation during training time to im-

prove convergence. We show that our method enables an agent in a domain with an

accurate nominal task model to efficiently learn a set of unspecified constraints from

sparse, proactive feedback that generalizes to novel environments in the domain. Fur-

thermore, we show that failing to account for proactivity in human feedback can lead

an agent to infer an incorrect constraint set and perform poorly in new environments.
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6.1 Constraint Learning Formulation

Let M = ⟨S,A, T,R⟩ be an MDP that represents the nominal domain of the

agent, which, for reward R, induces what we refer to as the nominal objective (on)

that the agent aims to maximize. In other words, the nominal objective aims to find

the policy, π that maximizes the cumulative reward under R,

argmax
π∈Π

E
[ ∑
s∼dπ

R(s, π(s))
]
. (6.1)

However, there exists a set, C ⊂ S × A, of constraints that is unknown to the

agent a priori that describe the state-action pairs that the agent is disallowed from

performing (or, more generally, are undesirable). The constraint set induces an ad-

ditional objective (oc), which aims to find the policy that minimizes the expected

number of constraint violations,

argmin
π∈Π

E
[ ∑
s∼dπ

C(s, π(s))
]
, (6.2)

where, for clarity, we let C : (s, a)→ I[(s, a) ∈ C].

Because the constraint set is unknown a priori, the agent must learn the constraint

set from proactive feedback provided by a human expert. The human is modeled by

the tuple, H = ⟨ϵ, h, τ⟩ where:

• ϵ ∈ (0, 1] models the degree of the human’s understanding of the agent’s behav-

ior,

• h ∈ Z+ is a temporal horizon, and

• β is an intervention temperature parameter.
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Under ϵ, we can compute a policy-like function that we called the corrupted ob-

server policy, π̂, which models the human’s lookahead belief over the agent’s behavior

i ≥ 1 steps into the future from state st, as

π̂(st+i) =


π(st+i) w.p. 1− ϵ

∼ U(A \ {π(st+1)}) w.p. ϵ

(6.3)

For the current time step, where i = 0, we assume that the human knows exactly the

the action that the agent is performing, ensuring that they will be able to intervene

in any constraint violation while supervising the agent. Intuitively, this represents

the human’s error in their model of the agent’s behavior.

Given H and π̂, we define the human intervention function I(st|h, β, π̂, C) →

{0, 1}, which represents the binary decision of the human to override the system, or

not, in state st given horizon h, temperature parameter β, corrupted observer policy

π̂ and the true constraint set C. In general, it is expected that it will be proportional

to the expected number of constraint violations in the h-term future horizon starting

at state st given policy π̂:

I(st|h, β, π̂, C) ∝ Es∼τ(st,π̂,h)

[
C(s, π̂(s))

]
(6.4)

where τ(st, π̂, h) represents the full set of h-step trajectories under π̂ starting from

state st.

More generally, we may only have access to some distribution over β, Dβ, and

distribution over h, Dh; in which case, we get that

I(st|Dh, Dβ, π̂, C) =

∫
β∼Dβ

∫
h∼Dh

I(st|h, β, π̂). (6.5)
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While the agent is still learning C, it maintains an estimate, Ĉ : S × A → [0, 1],

which represents the current likelihood estimate of (s, a) /∈ C. Given Ĉ, we can

compute an approximate intervention function,

Î(st|h, β, π̂, Ĉ) ∝ Es∼τ(st,π̂,h)

[
Ĉ(s, π̂(s))

]
(6.6)

and, correspondingly,

Î(st|Dh, Dβ, π̂, C) =

∫
β∼Dβ

∫
h∼Dh

Î(st|h, β, π̂). (6.7)

6.1.1 Learning Setting

Unlike prior chapters where all learning was performed online, we consider in this

chapter a train-then-deploy setting where the agent has a fixed amount of training

time available during which it must learn the constraint set to the best of its ability.

Once the training time is over, the agent is deployed into an unsupervised setting

where it must optimize its nominal task while adhering to its learned constraint set.

Extending the proactive feedback model to the learning-on-the-go setting introduces

challenging complexities that are beyond the scope of this chapter, but a discussion

of them can be found in Section 6.4.

Training

During training, we add a secondary reward, E, for interventions that is based off

of the information to provide an exploration utility to the agent for learning more of

its constraint set. Consequently, during training we model the problem as a multi-

objective MDP (see Definition 3) where the primary objective is the agent’s nominal

task objective, and the secondary objective is to learn its constraint set. In general,

one can include a penalty, I, for interventions as well; however, we associate no cost
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to an intervention during training as it is the job of the human to supervise and train

the agent. Formally, we define MT = ⟨S,A, T,
[
R I E

]T
,

[
wR wI wE

]
⟩.

Deployment

During deployment, the agent does not have a human that it can rely on to provide

it safety. Hence, we model the problem as an lexicographic MDP (see Definition 4)

where the primary objective is to minimize the probability of violating a constraint,

and the secondary objective is to maximize the nominal task reward. Formally, define

MD = ⟨S,A, T, [−C R]T , ⟨δ⟩, [oC , oR]⟩ where δ ∈ R+ is the maximum slack allowed

from the minimal probability of constraint violation.

6.2 Methodology

In this section, we describe our proposed method for learning constraints from

spare binary feedback signals in the form of proactive interventions. We start by

describing the agent’s training loop using a fixed known horizon h for ease of under-

standing. Later, we relax this requirement and provide a more general solution.

6.2.1 Training Loop

The algorithm starts by initializing the constraint model, Cθ1 , and the intervention

model, Iθ2 , randomly (line 1−2). Here, models are represented by two neural networks

parameterized by θ1 and θ2 respectively. Next, the agent’s policy, π0, is initialized

using the policy under the nominal reward model R (line 3). Lastly, the dataset D

that is used for training Cθ1 and Iθ2 is initialized to ∅. After initialization, Cθ1 and

Iθ2 are iteratively updated through an interactive learning process (line 5 − 12), as

detailed next.

The i-th iteration of the training loop starts by collecting a set of feedback, Fi,

using human supervision and the agent’s current policy π (line 6). Feedback is pro-

vided as sparse, binary signals, which come in the form ⟨s, f⟩, where the state s is
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Algorithm 2: Model-Based Constraint Learning from Proactive Feedback

Input: Domain Model D, Horizon h, Sample K, Reward Weight w
Result: Constraint Model Cθ1

1 Initialize Constraint Model Cθ1

2 Initialize Intervention Model Iθ2

3 π0 ← ComputePolicy(D/R,R)
4 D ← ∅
5 for i = 0 :∞ do
6 Fi ← CollectInterventionFeedback(πi, K)
7 D ← D ∪ (Fi, πi)
8 Train(Cθ1 , Iθ2 ;D, h)
9 RT ← GetTrainingReward(D,w, Cθ1)

10 πi+1 ← CalculatePolicy(D/R,RT )
11 if Termination Condition is Met
12 BREAK

13 return Cθ1

labeled by f ∈ {true, false} indicating an intervention, or no intervention, in state s

respectively. The set of feedback signals, Fi, along with current policy, πi, are added

to the existing dataset D (line 7). D is then used to jointly train Cθ1 and Iθ2 using

gradient-based optimization (line 8) given the horizon h. Based on the updated Cθ1 ,

a new training reward RT is calculated using the nominal reward R, the constraint

set C, the information-theoretic exploration bonus E, and the linearization weight w

(line 9). Finally, the policy is updated using the new training reward RT (line 10).

The training loop is continued until terminating conditions are met. There are many

possible choices for terminating conditions including using a fixed number of itera-

tions, the total number of interventions during feedback collection, or the amount

of change in constraint set prediction. Finally, the learned constraint model, Cθ1 , is

returned.
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6.2.2 Constraint Learning

Our core assumption is that the probability of a human intervention in a state sj

is a function of the expected number of constraint violations in the future from the

current state sj. We define this value

CV h
πi
(sj) = Eτ∼πi(sj)

[
t=h∑

t=0,(st,at)∈τ

C(st, at)

]
. (6.8)

To estimate this value, we learn a constraint model, Cθ1 , parameterized by θ1, under

which we estimate the probability of a state-action pair (sj, aj) being constrained as

Caj
sj

= P ((sj, aj) ∈ C) ≈ σ(Cθ1(sj, aj)) (6.9)

where σ(·) is n sigmoid function. Hence, CV h
πi
(·) can be estimated as follows:

CV h
πi
(sj) ≈ Eτ∼πi(s)

[
t=h∑

t=0,(st,at)∈τ

Cat
st

]
. (6.10)

Next, we use this value to estimate the probability of intervention at state sj using a

learned function, Iθ2 , parameterized by θ2; specifically:

f̂j = P (fj = 1|sj) ≈ σ(Iθ2(CV h
πi
(sj))). (6.11)

To optimize both θ1 and θ2 we use two different loss functions. First, we use a binary

cross-entropy loss to train both Cθ1 and Iθ2 using the intervention feedback:

Lf (θ1, θ2) = −
1

|D|
∑

⟨sj ,fj⟩∈D

fj log(f̂j) + (1− fj) log(1− f̂j). (6.12)
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However, as we do not have a ground truth label for constraint classification, in order

to ensure that Cθ learns the correct representation, we want to enforce the following

constraint:

E
⟨sj ,fj⟩∈D1

[CV h
πi
(sj)] > E

⟨sj ,fj⟩∈D0

[CV h
πi
(sj)], (6.13)

where, D1 = {⟨sj, fj⟩ ∈ D|fj = 1} and D0 = {⟨sj, fj⟩ ∈ D|fj = 0}. Generally, we

expect to see more constraint violations after an intervention state. This constraint

can naturally be enforced by a negative log softmax loss. Specifically,

Lc(θ1) = − log
( exp(J1)

exp(J1) + exp(J0)

)
(6.14)

where

J1 = E
⟨sj ,fj⟩∈D1

[CV h
πi
(sj)] (6.15)

and

J0 = E
⟨sj ,fj⟩∈D0

[CV h
πi
(sj)]. (6.16)

Intuitively, this loss goes down as I1 gets larger than I0.

6.2.3 Ensemble Learning

In order to get a better estimate of the uncertainty of our model, we train an

ensemble of multiple models for the constraint classification task [98]. To train each

model in the ensemble, in addition to sampling different subsets of the dataset, we

also use a different horizon, h, sampled from the distribution Dh. We use a weighted

voting scheme to estimate the ensemble. Specifically, we calculate the probability of

a constraint violation, C
aj
sj , as

Caj
sj

=

∑
k wkσ(Cθk1

(sj, aj))∑
k wk

, (6.17)
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where wk ∝ Accuracy(Cθk1
). Intuitively this puts more weight on models in the

ensembles that better explain the observed data, and also reduces the reliance on

knowing the exact horizon h.

Finally, we use an uncertainty measurement to improve constraint learning during

the training phase. Specifically, we define an information-theoretic exploration bonus,

E(sj, aj), as

Eaj
sj

= E(sj, aj) = H(P (constraint|(sj, aj))). (6.18)

where H is the Shannon entropy. The purpose of this exploration bonus is to encour-

age the agent to explore parts of the state-action space where the agent is uncertain

about its constraint prediction. Based on this, we construct a multi-objective reward,

RT =

[
R Î E

]T
, where Î(s, a) = −I[Iθ2(s, a) > µ] for some classification threshold

µ ∈ [0, 1] (usually set to 0.5), and solve the problem as a MOMDP with linear weights,

w =

[
wR wI wE

]
. Using the weight parameters wR and wE we can balance be-

tween exploitation of the nominal task reward and exploration (of constraints) during

training, particularly in settings where constraint learning is not the only reason for

training. The weight wI , which is assumed to be 0 in our work, can also be tuned to

balance the agent’s risk-aversion during training.

6.2.4 Deployment Phase

After the training phase is completed, we utilize our learned models in a deploy-

ment phase wherein we assume that there is no human that can intervene and protect

the robot. We construct a multi-objective reward, RD =

[
−Ĉ R

]
, where Ĉ and R

are as defined above (as the true constraint set is not known); note that we remove the

entropy-based exploration bonus during the deployment phase as there is no longer a

human who can provide intervention signals. We consider the lexicographic ordering,

o = [oC , oR], aiming to optimize first the constraint-based objective, and the nominal

task objective second given some slack δ ∈ R+ on objective oC .
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Additionally, we can modify the classification threshold µ to control how conser-

vative the agent should be during deployment about predicting possible constraints.

For example, setting µ to be very small will cause the agent to avoid a state-action

pair if there is even a small probability that the state-action pair is constrained. Fi-

nally, we would like to bound the worst-case performance of our model in deployment

given what is learned by the learning algorithm. Below, we show that if our learned

constraint set is at most α inaccurate, then the expected performance of the optimal

policy computed for the learned constraint set will be at most a 1+αT
1−αT

-factor of the

optimal expected value, assuming a finite horizon, T .

Theorem 3. Let π̂∗ be the optimal policy given the learned constraint set Ĉ and π∗

be the optimal policy given the true constraint set C, and let T ∈ N be a maximum

horizon for the problem. Denote by V π
c and V π

ĉ the value functions induced by the

policy π under constraint sets C and Ĉ respectively for the primary objective (see

Eq. 6.2) within the horizon T . If Ĉ is at least (1− α)-accurate, i.e.,

∑
(s,a)∈S×A[Ĉ(s, a) == C(s, a)]

|S||A|
≥ 1− α,

then maxs∈S V
π̂∗
c (s) ≤ 1+αT

1−αT
V π∗
c (s).

Proof. For notational clarity, we write, e.g., V π
c in stead of V π

c (s), understanding that

our proof is with respect to the maximal difference in value functions over all states.

First, observe that if we fix a policy π, then given that Ĉ is at most α incorrect,

it follows that |V π
c − V π

ĉ | ≤ αTV π
c simply by the definition under Equation 6.2.

Consequently, we have that

V π
c − V π

ĉ ≤ αTV π
c (6.19)

and

V π
ĉ − V π

c ≤ αTV π
c (6.20)

119



for any fixed policy π. We can apply Equation 6.20 to π∗, which gives us that

V π∗

ĉ ≤ (1 + αT )V π∗

c .

Additionally, by the definition of optimality (as this is a minimization problem), we

know that V π̂∗

ĉ ≤ V π∗

ĉ . Consequently, we get that

V π̂∗

ĉ ≤ (1 + αT )V π∗

c .

By applying π̂∗ to Equation 6.19, we also have that

V π̂∗

ĉ ≥ V π̂∗

c − αTV π̂∗

c .

Finally, by connecting the inequalities, we get that

V π̂∗

c − αTV π̂∗

c ≤ (1 + αT )V π∗

c =⇒ V π̂∗

c ≤
1 + αT

1− αT
V π∗

c ,

which gives us the claim.

6.3 Evaluation

We test our approach in two different simulated domains as described below. In

both domains, we begin by training the agent in one environment within the domain

using human intervention, before testing them in one or more different environments

within the domain where there is no human to intervene.

Domain Descriptions

Boxpushing

This domain is inspired by the Box-pushing domain presented by Saisubramanian

et al. [100] where a robot is asked with pushing a box from a starting position to

120



a goal position. The nominal reward is 0 in a goal state and negative elsewhere,

encouraging the agent to reach the goal as efficiently as possible. However, there are

rugs on the floor that the human does not want the robot to move over while pushing

boxes. Consequently, when the human believes the robot is about to move onto a

rug, they intervene and relocate the robot to a location from which there is no chance

of a constraint violation within their horizon. States s ∈ S are represented by the

tuple ⟨xi, yi, xg, yg, ϕ⟩, where xi and yi denotes the current location of the robot, xg

and yg denotes the robot’s goal location, and ϕ denotes if there is a rug in the robot’s

current location. Actions a ∈ A represent 8 directional movements. Each of the train

and test environments differs in the number of rugs and their positions.

Autonomous Vehicle Navigation

In this domain, an autonomous vehicle (AV) is supervised by a human and must

traverse a graph from a start node (intersection) to a goal node (intersection), modu-

lating its speed as necessary. States s ∈ S are represented by the tuple ⟨id, o, pr, s, x, θ⟩

where id is the intersection ID, o denotes whether the intersection appears obstructed,

pr denotes whether the intersection is protected for the AV, s denotes the AV’s speed,

x denotes the AV’s position relative to the intersection, and θ denotes their current

heading. Actions a ∈ A are represented by a direction of travel and a speed modu-

lation (acceleration, soft brake, hard brake, and nothing). The AV is initially only

aware of hard legal constraints, such as stopping at an unprotected intersection with

a stop sign, but not that it needs to slow down sufficiently early as it approaches an

intersection (even if it is protected) if there is a potential obstruction, and cannot

hard-brake right as it reaches an intersection for the comfort of the human. The

human intervenes by braking when they expect the AV to not slow down, or slow

down too late.
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Robot Box-Pushing

E1 E2 E5 E8 E10 Test 1 Test 2 Test 3

H = 1 I Acc. 55.3 75.2 77.4 78.1 78.99 — — —

C Acc. 78.4 88.1 83.7 82.2 83.5 85.6 86.5 82.7

H ∼ U(1,4) I Acc. 63.0 79.8 87.8 88.7 90.06 — — —

C Acc. 92.01 95.7 96.4 96.7 97.2 97.8 97.6 97.1

H ∼ U(1,5) I Acc. 55.1 73.2 82.8 86.1 86.2 — — —

C Acc. 94.2 96.1 95.4 95.4 97.07 97.9 98.0 97.4

H ∼ U(1,6) I Acc. 55.4 70.5 81.7 83.8 84.83 — — —

C Acc. 89.2 97.1 95.1 96.5 98.0 98.5 98.0 98.3

H ∼ tN(3,1.0) I Acc. 51.3 73.5 81.3 84.1 84.35 — — —

C Acc. 99.6 98.6 98.7 98.6 99.7 99.8 99.7 99.7

H ∼ tN(3,0.25) I Acc. 53.4 72.6 82.4 84.7 85.3 — — —

C Acc. 99.5 99.1 100.0 99.5 99.2 100.0 99.6 99.5

Autonomous Vehicle Navigation

E1 E5 E10 E15 E20 Test 1 Test 2 Test 3

H = 1 I Acc. 95.0 93.4 94.2 95.0 95.5 — — —

C Acc. 55.0 63.0 63.0 62.0 63.0 65.0 64.0 63.0

H ∼ U(1,4) I Acc. 52.5 80.9 80.8 84.0 80.6 — — —

C Acc. 61.0 75.0 77.0 76.0 76.0 75.0 76.0 76.0

H ∼ U(1,5) I Acc. 50.5 83.8 85.3 90.7 83.4 — — —

C Acc. 60.0 78.0 77.0 81.0 78.0 79.0 79.0 79.0

H ∼ U(1,6) I Acc. 63.0 83.5 83.3 83.9 85.9 — — —

C Acc. 61.0 77.0 77.0 80.0 81.0 81.0 81.0 81.0

H ∼ tN(3.5,2.5) I Acc. 60.0 82.6 84.8 85.5 81.5 — — —

C Acc. 65.0 80.0 80.0 83.0 80.0 80.0 80.0 80.0

H ∼ tN(4,0.5) I Acc. 52.0 87.6 90.2 90.0 91.2 — — —

C Acc. 66.0 79.0 81.0 82.0 82.0 83.0 82.0 82.0

Table 6.1: I Acc. and C Acc. denote the accuracies of the intervention and constraint
models respectively after each of 5 epochs of training, Ei., and in each of 3 test
environments.
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Robot Box-Pushing

Train Eval Test Eval 1 Test Eval 2 Test Eval 3

Ignorant [2.67,−2.09] [4.42,−2.07] [5.96,−2.05] [3.92,−2.05]

H = 1 [0.33,−2.90] [0.62,−3.04] [0.34,−3.15] [0.17,−3.00]

H ∼ U(1,4) [0.13,−2.88] [0.26,−2.92] [0.05,−3.08] [0.02,−2.93]

H ∼ U(1,5) [0.13,−2.84] [0.26,−2.94] [0.04,−3.08] [0.02,−2.94]

H ∼ U(1,6) [0.12,−2.82] [0.26,−2.93] [0.03,−3.07] [0.02,−2.93]

H ∼ tN(3,1.0) [0.10,−2.84] [0.25,−2.92] [0.02,−3.06] [0.01,−2.91]

H ∼ tN(3,0.25) [0.09,−2.84] [0.24,−2.92] [0.01,−3.05] [0.01,−2.91]

Autonomous Vehicle Navigation

Train Eval Test Eval 1 Test Eval 2 Test Eval 3

Ignorant [1.04,−14.07] [0.66,−9.43] [0.87,−10.37] [0.89,−17.13]

H = 1 [0.75,−15.19] [0.68,−9.52] [0.33,−12.83] [0.76,−17.57]

H ∼ U(1,4) [0.39,−16.03] [0.34,−10.31] [0.17,−13.20] [0.36,−18.71]

H ∼ U(1,5) [0.39,−15.77] [0.34,−10.32] [0.27,−12.56] [0.38,−18.63]

H ∼ U(1,6) [0.07,−16.59] [0.10,−10.83] [0.07,−13.04] [0.05,−19.21]

H ∼ tN(3.5,2.5) [0.35,−16.07] [0.33,−10.29] [0.17,−13.19] [0.36,−18.58]

H ∼ tN(4,0.5) [0.02,−16.62] [0.00,−10.96] [0.00,−12.92] [.003,−19.27]

Table 6.2: Bracketed values [x, y] denote the sample average constraint violations per
randomized episode (x) and sample average nominal reward value per randomized
episode (y), over 10, 000 simulations.
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Results

Tables 6.1 and 6.2 show the results from our experiment. In particular, we present

both the classification accuracy on interventions (i.e., predicting whether the human

will intervene for a given state-action pair) and constraints (i.e., predicting whether

a given state-action pair belong to the true constraint constraint set) after the 1st,

5th, 10th, 15th, and 20th epoch of training in table 6.1. In table 6.2 we present the

average objective value for each of the two objectives – constraint minimization and

domain reward maximization – over 10,000 trials for 4 domains: the domain where

the agent was trained, and three different test domains. Here, we compare the per-

formance against a reactive agent that assumes that the human always intervenes

due to the current state-action pair, and five different proactive agents, to illustrate

how the agent’s prior knowledge of the human’s temporal model affects its learning

ability. We tested a proactive agent with three uniform distributions over the hori-

zon H — U(1,4), U(1,5), and U(1,6) — and two truncated normal distributions

over H — tN(3.0,1.0)/tN(3.5,2.5) and tN(3,0.5)/tN(4,0.5) (for the two domains

respectively) truncated from 1-6 — where in all experiments the human had a fixed

horizon of 3 for the box pushing domain and 4 for the autonomous vehicle domain.

In table 6.1, we see that despite the success of the reactive agent in the autonomous

vehicle domain at achieving high intervention accuracy (although, notably not in the

box pushing domain), it is never able to break 90% and 70% in the two domains

respectively in terms of accuracy on the constraint set in either the train or test do-

mains, significantly under-performing in terms of constraint accuracy when compared

to the proactive agents. This illustrates that the agent is learning the wrong measure

to apply to future environments where predicting an intervention does not directly

predict a constraint. On the other hand, each proactive agent is able to achieve high

(≈ 85− 90%) accuracy on the intervention set, and nearly 100% accuracy in the box
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pushing domain, and at least 80% accuracy in the autonomous vehicle domain, for

the constraint set.

In table 6.2, we included the performance of an agent, referred to as Ignorant,

which did not model the constraint set at all and only attempted to maximize the

nominal objective, to provide a baseline for the performance on the nominal objective.

Notably, the reactive agent did not perform the best in either objective across all en-

vironments tested. In the box pushing domain, there was not significant difference in

performance between the five proactive agents, but all five significantly outperformed

the reactive agent in the primary objective, and even outperformed the reactive agent

in the nominal objective as well. These results indicate that in some domains, simply

accounting for proactivity is enough to properly learn the constraint set.

In the autonomous vehicle domain, the proactive agent with the truncated normal

distribution tN(3.5,2.5) performed comparably to the best performing proactive

agent with uniform distribution (U(1,6)), and generally outperformed the other two

uniform-distribution agents across the four domains. This indicates that appropriate

coverage over the horizon, so that sufficient weight is placed on or around the human’s

true horizon, can be more important than the distribution itself when the prior is fairly

uncertain.

However, an agent with almost perfect knowledge of the human’s horizon, using

distributions tN(3,0.5) and tN(4,0.5) for the two domains led to the best results

over all in both domains. This is particularly notable in the autonomous vehicle

domain where the agent incurred a 0.0, or nearly 0.0, sample likelihood of a constraint

violation in the three test environments, outperforming the other proactive agents by

at least an order of magnitude. These results strongly indicate that a well-informed

prior on the human’s temporal model can significantly improve the quality of the

learned constraint set by the agent in domains where the constraints are sparse,

which is particularly important in safety-critical domains like autonomous vehicles.
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6.4 Discussion

6.4.1 Learning Setting

In this chapter, we considered a train-then-deploy learning setting in which the

agent has a fixed amount of time or resources to learn its objective (in this case, the

constraint set) in the context of a human teacher who can provide a safety net for the

agent before it is deployed in to its operational environment without such a safety net,

but where the constraints will continue to hold. The natural extension is the online, or

“learn-on-the-go”, setting where the agent’s training occurs throughout its operation.

The challenge of such a setting is that, generally, human interventions are not free, as

we have considered in this chapter; as a consequence, a non-fully cooperative game is

induced as the agent’s objective is now impacted by the likelihood of an intervention,

impacting its own policy, which is known by the human and determines the human’s

likelihood of intervening.

6.4.2 Constraint Optimization

There are several ways of modeling constraint optimization problems; in this chap-

ter, we considered one that is naturally applicable to the types of open-world, safety-

critical domains that motivate this thesis, wherein we aim to minimize the expected

number of constraint violations as the primary objective in a lexicographic optimiza-

tion setting. We briefly discuss some other constraint settings one can easily extend

our approach to. First, one may consider a soft-constraint setting, where constraints

model non-critical elements like preferences or negative side effects [99]; this approach

can be naturally formulated as either an LMDP, as done here, but where the con-

straint violations represent the secondary objective, rather than the primary, or it can

be formulated as a MOMDP [92], as done here in the training phase but which can

be extended to the deployment phase as well. Second, one may consider a budgeted

violation setting in which there is an acceptable number of constraint violations that
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are allowable, but where the final policy must ensure that the budget itself is not

violated. Such an approach can be naturally formulated as a linear program, which is

a known approach to compute an optimal policy for a Markov decision process [71].

6.5 Conclusion

In this chapter, we consider the challenge of learning from proactive feedback, i.e.,

feedback generated by the human operator that is conditioned on their inferred near-

term future behavior of the system under an ϵ-noisy model of the agent’s policy. While

the problem is presented in its most general form, and is not specific to the competence

model, we treat the learning problem in a simple competence-aware setting where the

system aims to learn a set of constraints on autonomy, which can be viewed as where

it has the competence to operate autonomously or not. We specifically focus on

learning from sparse interventions in a train-then-deploy setting, rather than other

types of feedback such as full or partial demonstrations, agent-driven queries, or

action guidance, although extending to such types of feedback, or even multiple of

them, is a natural and interesting direction for future work.

We prove that if the learned constraint model is at least (1 − α) accuracy, then

the expected number of constraint violations under the optimal policy for the learned

constraint model will be at most a factor of 1+αT
1−αT

of the optimal expected number of

constraint violations, when operating in a finite horizon setting with horizon T ∈ N.

Additionally we provide rigorous empirical evaluations that demonstrated that even

though a reactive agent can learn with high accuracy where the human is going to in-

tervene in the training environment, their learned constraint model has low accuracy

and does not generalize well to new environments within the domain, leading to a

much higher sample likelihood of a constraint violation during the deployment phase

as compared to a proactive agent with even a uniform prior on the human’s tempo-

ral horizon. As a result, we suggest that in real world settings where the human’s
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feedback may be proactive, it is critical that models for learning from such feedback

consider this proactivity to ensure that they learn the correct model. Furthermore,

our results strongly indicate that a high quality prior over the human’s temporal

model can significantly improve results, leading to an almost zero sample likelihood

of a constraint violation in almost all test environments considered. Future work will

examine how calibration tasks, such as those performed by Schrum et al. [104], may

be used to produce high quality priors on the human’s temporal model.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis proposes a paradigm for sequential stochastic decision-making in open-

world domains based on the notion of competence modeling, called competence-aware

autonomy. Competence-aware autonomy is, intuitively, the ability of an agent to

learn and reason about (1) their limitations in executing a task autonomously, (2)

the environmental or situational factors that influence these limitations, and (3) the

proper form and extent of human assistance to request to optimally compensate for

their limitations. We suggest that such an ability is crucial for the long-term success

of intelligent robotic systems deployed in the open world for long durations.

To this end, we proposed a formal planning framework called a competence-aware

system that enables an autonomous system that can operate in multiple levels of

autonomy and is supported by external human assistance to model and learn its

competence over time through interactions with the human operator. We showeqd

that such a system can learn its competence exactly, optimizing its autonomous op-

eration and, by extension, its reliance on human assistance over time as well. We

then showed how the CAS model can be extended to partially-observable domains

in a well-defined manner that handles the nuances associated with competence when

the state is not fully known. In each subsequent chapter of the thesis, we introduced

novel models and methodological extensions that could handle challenges introduced

by relaxing one or more of the baseline assumptions made in the formulation of the

initial competence-aware system.
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Notably, we first demonstrated that a CAS can improve its competence online by

refining its state space over time by exploiting apparent inconsistencies in observed

feedback generated by the human operator, without adding additional work to the

human in doing so. We then proposed an extension to the CAS model that provides

the representational power to model and handle multiple, heterogeneous human oper-

ators with stochastic, dynamic internal states, as well as global and local contextual

information on which the system’s competence depends. In particular, we showed

that under the analogous assumptions (lifted to the extended setting), the contextual

CAS model will still maintain the same convergence guarantees as the CAS model.

Finally, we relaxed the standard assumption made in learning from human feedback

that feedback (i.e., interventions or demonstrations) are causally conditioned on the

concurrent behavior of the system, or behavior of the system that had just occurred.

Instead, based on recent work in human cognitive control, we suggested that in many

real world domains human feedback may instead be generated proactively, conditioned

on the inferred future behavior of the system by the human under the human’s model

of the system’s behavior. We provided a learning methodology based on proactive

feedback in the context of constraint learning that relied on minimal assumptions

about the human, but was still able to learn the true constraints in the majority of

the constraint space, and significantly outperformed an agent which assumed purely

reactive feedback in terms of the sample likelihood of a constraint violation.

7.1 Future Work

This thesis presents an initial effort towards the development of competence-

aware autonomy for open-world intelligence. We suggest that the use of competence-

modeling in sequential decision-making systems operating in the open world can en-

able them to maintain safer and more reliable behavior by optimizing their autonomy

and reliance on external human assistance. Indeed, we have shown that the mod-
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els and methodologies presented can be applied even in the context of challenging

real-world conditions such as partial-observability, multiple dynamic heterogeneous

humans, and proactive human feedback, even when the agent’s initial model is in-

complete in its feature representation.

However, there remains numerous directions for fruitful future work in the area of

competence-aware autonomy for open-world intelligence. Perhaps the most obvious

direction is in the application of competence-modeling to fleets of systems, which

may each share some (or all) of the same technical specifications and domain model,

but may interact with only some overlap in human operators, or may even each

have a completely unique human operator. This introduces interesting challenges,

such as how to best share information, particularly when the variations in underlying

assumptions is not known precisely, in order to expedite global competence-learning,

or how to bootstrap the competence model of a new system introduced into the fleet

while still maintaining system guarantees such as level-safety.

Additionally, in this thesis we have assumed that either the human operator(s) has

a good technical understanding of the agent to ensure that safe behavior is maintained,

and high quality feedback is provided, or, when that is not the case, that only non-

technical (e.g., preferential) feedback is provided by the human(s). A useful direction

of future work would be to explore how the agent and human can start with little to

no information about each other in a life-long, collaborative learning setting where

both the human’s model of the system and the domain itself may be non-stationary,

and determine if competence can still be learned safely and efficiently.

Finally, we have only considered a limited set of discrete feedback signals that

the agent can receive from the human due to their simple yet expressive nature.

However, there is a significant amount of work that considers additional forms of

feedback such as explicit action recommendations, action set restrictions or guidance,

behavioral demonstrations, or even information-seeking actions. Although such types
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of feedback are not always available, as discussed previously in the thesis, in domains

where they are available (and particularly if they are cheap to provide), learning

competence from them may be an efficient and effective approach.

132



BIBLIOGRAPHY

[1] James E. Allen, Curry I. Guinn, and Eric Horvitz. Mixed-initiative interac-
tion. IEEE Intelligent Systems and their Applications, 14(5):14–23, 1999. doi:
10.1109/5254.796083.

[2] Eitan Altman. Constrained Markov decision processes: stochastic modeling.
Routledge, 1999.

[3] L. Gregory Appelbaum, C. Nicolas Boehler, Lauren A. Davis, Robert J. Won,
and Marty G. Woldorff. The dynamics of proactive and reactive cognitive con-
trol processes in the human brain. Journal of Cognitive Neuroscience, 26(5):
1021–1038, 2014.

[4] Peter D. Ashworth and Judy Saxton. On ‘competence’. Journal of Further and
Higher Education, 14(2):3–25, 1990. doi: 10.1080/0309877900140201.

[5] Andrea Bajcsy, Dylan P. Losey, Marcia K. O’Malley, and Anca D. Dragan.
Learning from physical human corrections, one feature at a time. In ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 141–149,
2018.

[6] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike
adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-13(5):834–846, 1983.

[7] Connor Basich, Justin Svegliato, Kyle Hollins Wray, Stefan Witwicki, Joydeep
Biswas, and Shlomo Zilberstein. Learning to optimize autonomy in competence-
aware systems. In International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), pages 123–131, 2020.

[8] Connor Basich, Justin Svegliato, Allyson Beach, Kyle H. Wray, Stefan Witwicki,
and Shlomo Zilberstein. Improving competence via iterative state space refine-
ment. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1865–1871. IEEE, 2021.

[9] Connor Basich, John Peterson, and Shlomo Zilberstein. Planning with inter-
mittent state observability: Knowing when to act blind. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 11657–
11664. IEEE, 2022.

133



[10] Connor Basich, Kyle Hollins Wray, Stefan Witwicki, and Shlomo Zilberstein.
Introspective competence modeling for av decision making, April 19 2022. US
Patent 11,307,585.

[11] Connor Basich, Justin Svegliato, Kyle H. Wray, Stefan Witwicki, Joydeep
Biswas, and Shlomo Zilberstein. Competence-aware systems. Artificial In-
telligence, 316:103844, 2023.

[12] Jacob Beal and Miles Rogers. Levels of autonomy in synthetic biol-
ogy engineering. Molecular Systems Biology, 16(12):e10019, 2020. doi:
10.15252/msb.202010019.

[13] Tony Belpaeme, James Kennedy, Aditi Ramachandran, Brian Scassellati, and
Fumihide Tanaka. Social robots for education: A review. Science Robotics, 3
(21):eaat5954, 2018.

[14] Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest
path problems. Mathematics of Operations Research, 16(3):580–595, 1991.

[15] David Blackwell. Discrete dynamic programming. The Annals of Mathematical
Statistics, pages 719–726, 1962.

[16] Blai Bonet and Hector Geffner. Solving pomdps: Rtdp-bel vs. point-based
algorithms. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 1641–1646. Citeseer, 2009.

[17] Jeffrey M. Bradshaw, Hyuckchul Jung, Shri Kulkarni, Matthew Johnson, Paul
Feltovich, James Allen, Larry Bunch, Nathanael Chambers, Lucian Galescu,
Renia Jeffers, et al. Kaa: Policy-based explorations of a richer model for ad-
justable autonomy. In International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 214–221, 2005.

[18] Todd S. Braver. The variable nature of cognitive control: a dual mechanisms
framework. Trends in cognitive sciences, 16(2):106–113, 2012.

[19] John Bresina, Ari Jónsson, Paul Morris, and Kanna Rajan. Mixed-initiative ac-
tivity planning for Mars rovers. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 1709–1710, 2005.

[20] Alberto Broggi, Massimo Bertozzi, Alessandra Fascioli, C. Guarino Lo Bianco,
and Aurelio Piazzi. The ARGO autonomous vehicle’s vision and control sys-
tems. International Journal of Intelligent Control and Systems, 3(4):409–441,
1999.

[21] Alberto Broggi, Pietro Cerri, Mirko Felisa, Maria Chiara Laghi, Luca Mazzei,
and Pier Paolo Porta. The VisLab intercontinental autonomous challenge:
An extensive test for a platoon of intelligent vehicles. International Jour-
nal of Vehicle Autonomous Systems, 10(3):147–164, 2012. doi: 10.1504/IJ-
VAS.2012.051250.

134



[22] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján. Conditional
likelihood maximisation: A unifying framework for information theoretic feature
selection. The Journal of Machine Learning research, 13:27–66, 2012.

[23] David J. Bruemmer, Douglas A. Few, Ronald L. Boring, Julie L. Marble,
Miles C. Walton, and Curtis W. Nielsen. Shared understanding for collabo-
rative control. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 35(4):494–504, 2005.

[24] Roberto Capobianco, Guglielmo Gemignani, Luca Iocchi, Daniele Nardi,
Francesco Riccio, and Andrea Vanzo. Contexts for symbiotic autonomy: Se-
mantic mapping, task teaching and social robotics. In AAAI Workshop on
Symbiotic Cognitive Systems, 2016.

[25] Michael Cashmore, Maria Fox, Tom Larkworthy, Derek Long, and Daniele Mag-
azzeni. AUV mission control via temporal planning. In IEEE International
Conference on Robotics and Automation (ICRA), pages 6535–6541, 2014.

[26] Sonia Chernova and Manuela Veloso. Interactive policy learning through
confidence-based autonomy. Journal of Artificial Intelligence Research, 34:1–25,
2009. doi: 10.1613/jair.2584.

[27] Manolis Chiou, Nick Hawes, Rustam Stolkin, Kimron L Shapiro, Jess R Ker-
lin, and Andrew Clouter. Towards the principled study of variable autonomy
in mobile robots. In IEEE International Conference on Systems, Man, and
Cybernetics (ICSMC), pages 1053–1059. IEEE, 2015.

[28] Manolis Chiou, Nick Hawes, and Rustam Stolkin. Mixed-initiative variable
autonomy for remotely operated mobile robots. ACM Transactions on Human-
Robot Interaction (THRI), 10(4):1–34, 2021.

[29] Glen Chou, Dmitry Berenson, and Necmiye Ozay. Learning constraints from
demonstrations with grid and parametric representations. The International
Journal of Robotics Research, 40(10-11):1255–1283, 2021.

[30] Jeffery A. Clouse. On integrating apprentice learning and reinforcement learn-
ing. PhD thesis, University of Massachusetts, 1996.

[31] Silvia Coradeschi and Alessandro Saffiotti. Symbiotic robotic systems: Humans,
robots, and smart environments. IEEE Intelligent Systems, 21(3):82–84, 2006.
doi: 10.1109/MIS.2006.59.

[32] Clarissa Costen, Marc Rigter, Bruno Lacerda, and Nick Hawes. Shared auton-
omy systems with stochastic operator models. In International Joint Conference
on Artificial Intelligence (IJCAI), pages 4614–4620, 2022.

[33] Ernst Dieter Dickmanns. Dynamic vision for perception and control of motion.
Springer Science & Business Media, 2007.

135



[34] Gregory Dorais, R. Peter Bonasso, David Kortenkamp, Barney Pell, and De-
bra Schreckenghost. Adjustable autonomy for human-centered autonomous sys-
tems. In IJCAI Workshop on Adjustable Autonomy Systems, pages 16–35, 1999.

[35] David D. Dubois. The competency casebook: Twelve studies in competency-
based performance improvement. Human Resource Development, 1998.

[36] Lance Eliot. Legal judgment prediction (ljp) amid the advent of autonomous
ai legal reasoning. arXiv preprint arXiv:2009.14620, 2020.

[37] Lance Eliot. An ontological AI-and-law framework for the autonomous levels
of AI legal reasoning. arXiv preprint arXiv:2008.07328, 2020.

[38] Eugene A. Feinberg and Adam Shwartz. Handbook of Markov decision processes:
Methods and applications, volume 40. Springer, 2012.

[39] George Ferguson, James F. Allen, Bradford W. Miller, et al. TRAINS-95: To-
wards a mixed-initiative planning assistant. In AAAI International Conference
on Artificial Intelligence Planning Systems (AIPS), pages 70–77, 1996.

[40] Fanny Ficuciello, Guglielmo Tamburrini, Alberto Arezzo, Luigi Villani, and
Bruno Siciliano. Autonomy in surgical robots and its meaningful human control.
Journal of Behavioral Robotics, 10(1):30–43, 2019. doi: 10.1515/pjbr-2019-0002.

[41] Terrence Fong, Charles Thorpe, and Charles Baur. Multi-robot remote driving
with collaborative control. IEEE Transactions on Industrial Electronics, 50(4):
699–704, 2003.

[42] Yang Gao and Steve Chien. Review on space robotics: Toward top-level
science through space exploration. Science Robotics, 2(7), 2017. doi:
10.1126/scirobotics.aan5074.

[43] E. Amir M. Ghalamzan, Firas Abi-Farraj, Paolo Robuffo Giordano, and Rus-
tam Stolkin. Human-in-the-loop optimisation: mixed initiative grasping for
optimally facilitating post-grasp manipulative actions. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3386–3393.
IEEE, 2017.

[44] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and acting.
Cambridge University Press, 2016.

[45] Thomas F. Gilbert. Human Competence: Engineering Worthy Performance.
1996.

[46] Ella Glikson and Anita Williams Woolley. Human trust in artificial intelligence:
Review of empirical research. Academy of Management Annals, 14(2):627–660,
2020.

136



[47] Nathan A. Greenblatt. Self-driving cars and the law. IEEE Spectrum, 53(2):
46–51, 2016.

[48] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L. Isbell, and
Andrea L. Thomaz. Policy shaping: Integrating human feedback with rein-
forcement learning. Advances in Neural Information Processing Systems, 26,
2013.

[49] Paul Hager and Andrew Gonczi. What is competence? Medical Teacher, 18(1):
15–18, 1996. doi: 10.3109/01421599609040255.

[50] Nick Hawes, Christopher Burbridge, Ferdian Jovan, Lars Kunze, Bruno Lac-
erda, Lenka Mudrova, Jay Young, Jeremy Wyatt, Denise Hebesberger, Tobias
Kortner, et al. The STRANDS project: Long-term autonomy in everyday en-
vironments. IEEE Robotics & Automation Magazine, 24(3):146–156, 2017. doi:
10.1109/MRA.2016.2636359.

[51] G.D. Hermann and R.J. Kenyon. Competence-based vocational education,
project report, 1987.

[52] Charlie Hewitt, Ioannis Politis, Theocharis Amanatidis, and Advait Sarkar.
Assessing public perception of self-driving cars: The autonomous vehicle accep-
tance model. In International Conference on Intelligent User Interfaces, pages
518–527, 2019.

[53] Kevin Anthony Hoff and Masooda Bashir. Trust in automation: Integrating
empirical evidence on factors that influence trust. Human Factors, 57(3):407–
434, 2015. doi: 10.1177/0018720814547570.

[54] Jarrett Holtz, Arjun Guha, and Joydeep Biswas. Interactive robot transition
repair with smt. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 4905–4911, 2018.

[55] Fernando Huenupán, Nestor Becerra Yoma, Carlos Molina, and Claudio Gar-
retón. Confidence based multiple classifier fusion in speaker verification. Pattern
Recognition Letters, 29(7):957–966, 2008. doi: 10.1016/j.patrec.2008.01.015.

[56] Shu Jiang and Ronald C. Arkin. Mixed-initiative human-robot interaction: def-
inition, taxonomy, and survey. In IEEE International Conference on Systems,
Man, and Cybernetics (ICSMC), pages 954–961. IEEE, 2015.

[57] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
learning: A survey. Journal of Artificial Intelligence Research (JAIR), 4:237–
285, 1996.

[58] W. Bradley Knox, Cynthia Breazeal, and Peter Stone. Learning from feed-
back on actions past and intended. In ACM/IEEE International Conference
on Human-Robot Interaction, Late-Breaking Reports Session (HRI). Citeseer,
2012.

137



[59] W. Bradley Knox, Peter Stone, and Cynthia Breazeal. Training a robot via
human feedback: A case study. In International Conference on Social Robotics
(ICSR), pages 460–470. Springer, 2013.

[60] Andrey Kolobov, Mausam, and Daniel S. Weld. A theory of goal-oriented MDPs
with dead ends. In Conference on Uncertainty in Artificial Intelligence (UAI),
pages 438–447, 2012.

[61] Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms.
John Wiley & Sons, 2004.

[62] Clayton Kunz, Chris Murphy, Hanumant Singh, Claire Pontbriand, Robert A.
Sohn, Sandipa Singh, Taichi Sato, Chris Roman, Koichi Nakamura, Michael
Jakuba, et al. Toward extraplanetary under-ice exploration: Robotic steps
in the Arctic. Journal of Field Robotics, 26(4):411–429, 2009. doi:
10.1002/rob.20288.

[63] Lars Kunze, Nick Hawes, Tom Duckett, Marc Hanheide, and Tomáš Krajńık.
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