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Abstract— Planning for autonomous operation in unknown
environments poses a number of technical challenges. The
agent must ensure robustness to unknown phenomena, un-
predictable variation in execution, and uncertain resources,
all while maximizing its objective. These challenges are ex-
acerbated in the context of space missions where uncertainty
is often higher, long communication delays necessitate robust
autonomous execution, and severely constrained computational
resources limit the scope of planning techniques that can be
used. We examine this problem in the context of a Europa
Lander concept mission where an autonomous lander must
collect valuable data and communicate that data back to
Earth. We model the problem as a hierarchical task network,
framing it as a utility maximization problem constrained by a
strictly monotonically decreasing energy resource. We propose
a novel deterministic planning framework that uses periodic
replanning and sampling-based optimization to better handle
model uncertainty and execution variation, while remaining
computationally tractable. We demonstrate the efficacy of our
framework through simulations of a Europa Lander concept
mission in which our approach outperforms several baselines
in utility maximization and robustness.

I. INTRODUCTION

Planning in space-based domains is often challenged by
large uncertainty, very low margins for error, and stringent
technical constraints that render many planning techniques
impractical or infeasible.

Traditional approaches to planning in space-based domains
have consequently utilized deterministic or sampling-based
planning methods [1], [2] which are fast and computationally
inexpensive, and can be very effective when paired with a
priori expert domain knowledge [3]. Recent work has investi-
gated how periodic replanning, flexible execution, and online
model updates can be used in conjunction with deterministic
planning techniques to improve the efficacy and robustness
of the plans executed by a space-based robotic system [4].

While these approaches can be effective in well-
understood domains, they do not actively consider model
uncertainty and off-nominal behavior during plan generation,
and are hence reactive in how they handle the domain uncer-
tainty. In this work, we propose a planning framework that
extends the algorithm from [4] by proactively anticipating
deviations from nominal execution by incorporating domain
uncertainty into the plan generation. We examine the efficacy
of our approach in the context of a proposed concept mission
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Fig. 1: An illustration of the Europa Lander concept mission
in which an autonomous lander is tasked with performing in-
situ analysis of sampled surface material and communicating the
collected data to Earth.

in which a lander is tasked with analyzing surface material to
acquire valuable scientific data by performing in-situ analysis
of samples excavated from the surface of the Jovian moon
Europa, and communicating that data back to Earth [5].

This concept mission entails several challenges that differ-
entiate it from prior missions. First, a priori knowledge of the
environment is severely limited and uncertain. Second, the
system’s battery supply is finite and non-repletable (i.e. there
is no possible power generation). Third, communication with
Earth is constrained by two factors: (1) long communication
delays when communicating with Earth due to distance mean
ground-in-the-loop operations cannot be relied on (as the
system will be losing battery while waiting for communi-
cations), and hence the lander must be capable of operating
fully autonomously. And (2), due to Jovian occlusion the
lander will be faced with long periodic communication
blackouts (roughly 42 out of every 84 hours) which constrain
when the lander is capable of downlinking the data it has
collected to Earth. As utility is only assigned to data that
is acquired and successfully downlinked to Earth, in order
for the Lander to be successful it needs to carefully manage
the trade-off between data acquisition and communication.
Furthermore, it must do this while constrained by a finite and
monotonically decreasing battery supply, limited knowledge
of its environment, and limited communication with Earth.

We model the problem as a hierarchical task network
(HTN) [6] due to the structured nature of the tasks that
the lander can perform, and consequently use an anytime



heuristic-search algorithm designed for solving HTNs [4]
as the primary subroutine of the proposed approach. Our
approach is based on principles from Hindsight Optimization
(HOP) [7] and works by hypothesizing a set of sampled sce-
narios that the system may face, planning for each scenario,
and evaluating each of the sampled plans’ performances
across all scenarios. The plan with the highest weighted
value is selected (this can be viewed as an approximation to
maximizing expected utility). As the planner is deterministic,
we also perform periodic replanning to ensure that the sys-
tem’s performance does not deviate too far from expectation.
This approach has similarities with determinization-based
methods that have been highly successful in solving large
Markov decision processes (MDPs) [8], [9]. While MDPs
and other stochastic sequential decision making models have
been had success in many settings, they are computational
expensive and ill-suited for domains with concurrent actions
and continuous states such as what we consider here.

We present empirical results against two baseline ap-
proaches similar to those used in prior missions: a greedy
planner with replanning and an anytime heuristic-search
based planner with replanning. We show that the proposed
planning framework, HTNSearch-PHRA, is more effec-
tive on average and more robust to uncertainty across five
different mission scenarios. In addition, we analyze the
effect of increasing the size of the hypothesized scenario set
by comparing the performance of the algorithm with four
different sets of hypothesized scenarios.

II. PROBLEM DESCRIPTION

A. Domain Overview

The primary goal of the Europa Lander concept mis-
sion is to excavate and sample the moon’s surface, ana-
lyze the sampled material for signs of biosignatures, and
communicate that data back to Earth over at least thirty
days [5]. Additionally, there are secondary objectives to
take panoramic images of the Europan surface and collect
seismographic data. Lander operations are therefore limited
to primary objective tasks, secondary objective tasks, and
data communication. This provides significant structure to
the problem, since the concept mission clearly defines the
sequence of actions required to achieve these goals.

The Europa Lander concept mission is also constrained
by a finite battery that cannot be recharged. Battery life is
a depletable resource, and the lander must use its energy
as efficiently as possible. Each task – including sleeping
– consumes energy from the battery, and the algorithm
must plan accordingly to maximize utility in the face of
this constraint. In addition to this challenge, the surface
characteristics of Europa are uncertain, and any prior mission
model that is generated before landing are assumed to be
inaccurate. In particular, the energy consumption of the
excavation and sample collection tasks is largely unknown.
There is also significant variation in the utility of any given
sample, since the value of sampling a given target on Europa
depends on whether the material is scientifically interesting,
e.g. if a biosignature is present.

B. Problem Formulation

Due to the presence of continuous state variables and
the necessity of modeling concurrent actions, we find that
stochastic planning models such as MDPs do not support
our problem domain well while still being efficient to solve.
Instead, as our problem has additional structure in how tasks
are conditioned, we represent our model as a hierarchical
task network (HTN). Hierarchical task networks have been
extensively studied over the last several years as efficient
models for planning in highly structured domains where
expert knowledge can be embedded directly into the plan-
ner [10], [11]. In an HTN, hierarchical tasks are decomposed
into a set of subtasks. We refer to the higher-level tasks as
parent tasks, and refer to their children as subtasks. Parent
tasks may decompose into a number of different partially
ordered sets of subtasks; we refer to each of these sets as
a potential decomposition of that parent task. Finally, we
refer to tasks with no decompositions as primitive tasks.
These primitive tasks represent tasks that the lander can
be directly commanded to perform. Decompositions enable
us to significantly reduce the planning search space as we
can treat all subtasks of a parent task as a singular block
during the planning process; for example, the model treats
“excavate, sample, transfer, analyze” as a single unit and
schedules the subtasks accordingly.

Formally, an input to the problem is a set T = {T1, ..., Tn}
and a system state S. Each Ti is a task that is represented by
the tuple ⟨pi, di, ei, ui, si, Ci,Wi, Di⟩ where pi is the priority
of the task, di is the expected duration of the task, ei is the
expected rate of energy usage by the task, ui is the expected
utility of the task, si is the preferred start time of the task,
Ci is the set of constraints that must be satisfied for the task
to be scheduled, Wi = {[ti1, ti2], ..., [tin−1, tin]} is the set
of time windows that the task can be scheduled in, and Di =
{Ti1, ..., Tim} is the partially ordered set of decompositions
of the task, which can be empty if Ti is a primitive task.

The state, S, is represented by a set of timeline values that
model various parameters of the system such as remaining
battery supply, current data load, current time, whether the
arms have been heated, etc.

There are four main parent task types in the mis-
sion model. The first is a Preamble which consists
of post-landing initialization and other one-time initial-
ization tasks, and must be executed immediately upon
landing. Second are data acquisition tasks which con-
sist of excavation, sample collection, sample
transfer, and sample analysis tasks. Excavation
can take place in one of three excavation sites, and may be
skipped if a site has previously been excavated. For collection
tasks, the lander may choose between one of several collec-
tion targets at any given excavation site (repeated sampling
of the same target is allowed with no penalty). The analysis
task returns the dataload acquired from a given sample upon
completion; dataload represents the maximum potential util-
ity that the acquired data provides upon successful downlink
to Earth. Third, there are Seismograph/Panorama tasks which



consist of seismographic data collection and
panoramic image data collection; these tasks
provide less data but are more reliable in their execution.
Fourth is the communication task which decomposes into
either a single, or a sequence of two, communication(s),
either of which can be of raw data or compressed data.

In this domain, we assign utility solely to the successful
completion of a communication task, where communicating
raw data provides greater utility but consumes more energy
than communicating compressed data; note that both com-
munication tasks consume the same amount of dataload.
Expected utilities are assigned to tasks a priori but we
note that in practice may likely be updated online as new
information is obtained by the system.

III. APPROACH

The underlying planning method employed in this ap-
proach relies on heuristic search. Search-based planning
algorithms have been popular for a number of years as they
(1) do not require that the full state space is evaluated to
produce a solution [12], (2) are often anytime algorithms that
can return a solution at any point during runtime [13], and
(3) can easily leverage heuristics to reduce the computational
burden while still achieving high performance [14].

A. HTNSearch

Our algorithmic contribution, Algorithm 1, relies on the
heuristic search approach for solving HTNs described in [4] –
which we henceforth refer to as HTNSearch – as its primary
subroutine. We offer a brief description of their algorithm.
HTNSearch initializes a search graph on a flattened

version of the input task network, where nodes hold partial
plans and edges hold (flattened) task decompositions or
primitive tasks. As the algorithm is deterministic, the cost
and utility associated with any node is their respective sums
over the tasks in the partial plan. The algorithm performs a
heuristic branch and bound search procedure over the search
graph where the search is bounded by both the feasibility
of partial plans (their total energy cost cannot exceed the
current battery supply, and the plan adheres to inter-task
constraints), and optional computational constraints on the
number of explorable nodes. For any plan and decomposition
pair, (P, d), a density based heuristic value of utility(P ) +
utility(d)
cost(d) is used and ties are broken in favor of lower cost.
The main limitation of this approach is that it is a

deterministic algorithm for a non-deterministic domain. In
other words, the plan that is produced assumes that the
future will operate exactly according to expectation. The
original approach addresses this issue primarily through the
use of online model updates and frequent replanning to
“course-correct” the system online. This idea is similar to
that of determinization-based approaches for solving very
large MDPs, such as FF-Replan [8], which have been shown
to perform well in the MDP setting, particularly in the infinite
horizon case, but are not robust to dead-ends. Hence, we
propose a planning algorithm that proactively considers off-
nominal behavior and execution during plan time, rather

than just reactively responding to off-nominal behavior and
execution. We demonstrate through empirical evaluations
that our approach is indeed more robust to off-nominal
scenarios than the standard heuristic search, performing as
well or better in both positive and negative scenarios, without
sacrificing performance in the nominal case.

B. HTNSearch with Post Hoc Robustness Analysis

The pseudocode for the proposed approach can been seen
in Algorithm 1, and we describe it here. Algorithm 1 takes
in as input a hierarchical task network, T , and begins
by producing a set of hypothesized scenarios, H, via the
function hypothesizeScenarios (line 3). A scenario h ∈ H
is comprised of an initial state and an instantiation of the
parameterized domain (e.g. the timeline impacts of each
task). This function is left general as its implementation will
be both domain and purpose specific. In our experiments, we
hypothesize multiple scenarios where the current battery life
of the lander is varied to represent the uncertainty over the
“true” battery life of the lander. However, other parameters
may be varied such as the time or energy to perform various
tasks, the likelihood of positive data from different samples,
or the possibility of excavated sites collapsing. These scenar-
ios may be developed using expert knowledge a priori, or
may be generated online by drawing from distributions that
parameterize the domain model.

For each hypothesized scenario h ∈ H, the algorithm
instantiates h by updating the relevant parameters of T and
then calls HTNSearch on the newly instantiated task net-
work to produce the best-found plan P (lines 5-7) within the
computational constraints. The plan P is evaluated on each
scenario h′ ∈ H by computing the expected utility following
P , V P(T , h′), using a stochastic execution graph subroutine
(line 10). The observed expected utility is weighted by a
function getScenarioWeight and the weighted value is added
to the total score of the plan, µP (lines 9-10). Finally, the
plan that had the highest total score is returned.

The function getScenarioWeight returns a real valued num-

Algorithm 1: HTNSearch-PHRA
Input: A hierarchical task network T and state s
Result: A plan P∗

1 P∗ ← None
2 µ∗ ← −∞
3 H ← hypothesizeScenarios(T , s)
4 for h ∈ H do
5 T̂ ← instantiateScenario(T , h)
6 P ← HTNSearch(T̂ )
7 µP ← 0
8 for h′ ∈ H do
9 γ ← getScenarioWeight(T , h′)

10 µP ← µP + γV P(T , h′)
11 if µP > µ∗ then
12 P∗ ← P
13 µ∗ ← µP ;

14 return P∗



Fig. 2: An illustration of the HTNSearch-PHRA algorithm.

ber in [0, 1], given an HTN and a scenario. In our case, we
compute the Legendre-Gauss quadrature weights assuming
that the parameters relevant to the hypothesized scenarios are
normally distributed. In general we believe that any relative
likelihood-based weighting scheme will work, however we
note that offline optimization of these weights may be
worthwhile particularly when the scenarios considered are
over multiple different task network parameters.

We compute the expected utility of the plan P using a
stochastic subroutine that builds the non-deterministic exe-
cution graph of P given the distributions which parameterize
the task network (energy cost, duration, data, and utility).
Computing the expected utility of a deterministic plan in a
stochastic domain is significantly cheaper than computing a
fully stochastic policy in the first place, and still allows us
to observe a more accurate evaluation of each plan.

Finally, as the HTN search algorithm dominates the other
subroutines in terms of runtime complexity, the runtime of
Algorithm 1 is ∼ |H| times the runtime of HTNSearch
when |H| is small. However, as |H| grows, the compu-
tation spent evaluating plans grows at a rate of O(|H|2).
Furthermore, there are diminishing returns to increasing the
number of hypothesized scenarios considered, particularly
when adding very low likelihood scenarios to H. An analysis
of this can be found further in the paper. Ultimately, the
problem of determining which, and how many, scenarios to
include in H is an important element in balancing the trade
off between efficiency and effectiveness.

IV. EXPERIMENTS

A. Experimental Setting

To evaluate the performance of Algorithm 1, we com-
pared against two baselines: HTNSearch and GREEDY.
In GREEDY, priorities were assigned a priori to each task
decomposition, and the planner greedily attempts to schedule
tasks in order of priority at each planning cycle, skipping
over tasks if they cannot be scheduled due to conflicts
or violated constraints. Priorities are assigned offline using
a combination of hard-coded domain knowledge (e.g. the
Preamble must have the highest priority) and Monte carlo
trials on sampled priority orderings across the input task.

We simulated five different stochastic variants of the
domain: (1) Nominal, (2) Low Energy, (3) High Energy, (4)
High Consumption, (5) Low Consumption. In (1) there are

no off-nominal, or unexpected, events or behaviors that occur
during simulation. In (2) and (3) there is a sudden change
(±20%) in remaining battery life that occurs 500 time units
into the simulation as the battery recalibrates. In (4) and (5),
energy is stochastically drained or added to the observed
remaining battery supply at every state update. In all cases,
task impacts such as energy rates, duration, and data load
are drawn from low variance Gaussians centered around the
nominal mean at runtime.

In our experiments, we specifically focused on off-nominal
variations on remaining battery for three reasons. The first
is that, historically, battery measurements have come with
large uncertainty. The second is that battery life is the most
valuable resource in this domain, as time only matters in that
there is a constant minimum Hotel load, and zero remaining
battery supply is a terminal absorbing state. The third reason
is that deviations in battery supply or energy consumption act
as direct proxies for most other off-nominal behavior (extra
time to complete a task, getting stuck, failing to perform a
task requiring it to be repeated, etc.). However, the algorithm
presented is not relegated to such a constraint, and in general
can capture arbitrary scenarios.

B. Experimental Results

The main results of our experiments can be seen in
Figures 3 and 4. The first experiment compares the per-
formance of three algorithms: GREEDY, HTNSearch, and
HTNSearch-PHRA(3). The second experiment compares
the performance of four variations of HTNSearch-PHRA,
where the size of the hypothesized scenario set is increased.

1) Cross-Method Comparison: Figure 3 shows the mean
and standard error of the utility achieved by each planning al-
gorithm across the five domain variants. Unsurprisingly, both
HTNSearch and HTNSearch-PHRA outperform GREEDY,
particularly in the LE and HC variants which demon-
strate the brittleness of a greedy approach which has no
proper recourse for handling unexpected negative situations.
HTNSearch-PHRA, which proactively selects plans that
are robust to low-energy hypothesized scenarios, is more
robust to the “pessimistic” variants, producing more utility
on average in both the Low Energy and High Consumption
scenarios. The difference is more significant in the Low
Energy variant as HTNSearch-PHRA can proactively plan
for having less energy, and does not just react to the latest



Fig. 3: Utility achieved by each planning algorithm on all five
variants. Values are mean and standard error over 10 trials.

observations and state updates (as HTNSeach does). How-
ever, the performance is still greater in the High Consumption
variant because it can constantly respond to the small off-
nominal deviations in behavior, and though it selects plans
that are robust to high energy scenarios, it does not know
that such a situation will occur until it has. In the optimistic
variants, where energy is more abundant than expected, both
HTNSearch and HTNSearch-PHRA perform comparably
as they are both able to make use of the excess battery
supply, having achieved higher utility than in the Nominal
case. As above, however, our algorithm performs better in the
High Energy variant as it proactively creates plans robust
to similar situations. Finally, it is worth emphasizing that
HTNSearch-PHRA also performed comparably – up to
noise – to HTNSearch in the Nominal domain where the
base task network that is used by HTNSearch is correct
(up to stochasticity). This means that our approach, although
sensitive to off-nominal situations, does not sacrifice perfor-
mance quality in the nominal case as well.

Overall, these results demonstrate that the proposed al-
gorithm performs comparably or better to each baseline
approach in all domain variants considered, but the benefits
are most notable in cases where the deviations are large
and sudden, rather that small and frequent, where reactive
“course-correcting” is less effective. The difference is more
visible in the “pessimistic” variants because the reactive
approach can always benefit from extra battery supply as
the excess is observed, but can not always bounce back
from energy deficits. However, proactively producing plans
that are sensitive to both these scenarios ensures that the
system follows a plan that never performs too poorly in any
hypothesized scenario, while also retaining the benefits of
reactively course-correcting.

2) Analysis of H on the Quality of HTNSearch-PHRA:
Figure 4 shows the mean and standard error of the utility
achieve by Algorithm 1 with four different hypothesis set
sizes on each domain variant. We observe that increasing
the size of the hypothesized scenario set generally improves
performance but faces diminishing returns with the number
of additional scenarios. We suggest that the reason for this
is that hypothetical scenarios with low likelihood impact the
score of each generated plan to a sufficiently low degree that

Fig. 4: Utility achieved by Alg. 1 with |H| = 1, 3, 5, and 7 on all
five variants. Values are mean and standard error over 10 trials.

plans generated for low likelihood scenarios are never actu-
ally selected to be scheduled. This issue may be compounded
by the fact that each hypothesized scenario alters the same
parameter, namely battery supply, in our experiment.

The reason that HTNSearch-PHRA(5) and
HTNSearch-PHRA(7) perform better than
HTNSearch-PHRA(3) in the energy based variants
compared to the consumption based variants is likely that
the ability to constantly course correct in response to small
observed deviations dominates the effect of considering low-
likelihood scenarios during the planning phase. However, if
we consider variants (N) and (HC), HTNSearch-PHRA(5)
and HTNSearch-PHRA(7) actually perform worse than
the other two. The reason for this is that the plans selected
are too conservative – on account of being scored on low
likelihood negative outcomes – and end up costing utility
over the course of the full problem horizon.

In the future, we plan to further analyze the effect of a
more diverse portfolio of hypothesized scenarios across more
domain parameters, and whether there is a minimum scenario
likelihood needed to lead to a meaningful impact. As the
runtime of the algorithm scales with the size of H, ensuring
that |H| is small while still covering a sufficient set of off-
nominal scenarios is important for an effective mission.

V. RELATED WORK

Onboard planning and execution are of great interest
to the space domain. The Remote Agent was an architec-
ture for onboard planning and execution addressing remote
autonomous operation with deadlines, resource constraints,
and concurrent activities [15]. They used a batch plan-
ner with a refinement search paradigm [16] to construct
a temporally flexible plan but did not consider utility in
plan generation and did not perform continuous replanning
due to the computational expense and long planning time
(indeed the replans were scheduled in the prior plan). The
Earth Observing One (EO-1) spacecraft [17] was designed
specifically to react to dynamic scientific events. Planning
was performed by the CASPER planning software [18],
which did not produce temporally flexible plans, along with
the onboard executive SCL to flexibly interpret the execution
of a plan to handle minor execution runtime variations. The
flight and ground planners [19] both used a domain specific



search algorithm that enforced a strict priority model over
observations for limited model of utility. This scenario is
similar to that proposed in this paper, in which the lander
must react to dynamic events and observations in order to
maximize its utility, while still adhering to both mission
and spacecraft constraints. Recently, the Intelligent Payload
Experiment (IPEX) also successfully used the CASPER
planning software to achieve its mission objective, further
validating the efficacy of using onboard replanning to handle
dynamic events and observations during operation even when
the plans are not temporally flexible [20].

The M2020 Perseverance rover also plans to fly an
onboard planner [21] to recover productivity lost from
following fixed time plans [22]. The M2020 planning ar-
chitecture relies on rescheduling and flexible execution [23],
ground-based compilation [1], heuristics [2], and very limited
handling of planning contingencies [24]. However, many
characteristics of the M2020 mission are fundamentally
different from the concept mission we consider here, such
as the lack of reliable a priori model parameters, the non-
repletable battery, and the long communications blackout
time windows incentivizing greater mission autonomy.

While the motivations of our approach are similar to the
area of robust optimization, our work differs from prior
work [25], [26] in two key aspects. First, robust optimization
is a method for avoiding solutions to convex optimization
problems that end up being infeasible in practice due to
the realizations of uncertain parameters. However, as our
problem is an indefinite planning problem, formulating it
as a convex optimization problem is not straightforward.
Second, uncertainty sets are often built from sampled data
in the absence of well-defined priors; however, in our case,
we assume the existence of well-defined priors over the
uncertain parameters (e.g. battery life). We do not use these
distributions during planning as full stochastic planning is
intractable given the computational resources of the lander.

VI. CONCLUSION

Planning and scheduling tasks in the presence of large
a priori uncertainty is a challenging problem for space-
based missions. The plans need to be robust and effective
without risking compromising system safety or mission
success even in the face of domain uncertainty and severe
computational constraints. These issues are exacerbated in
the context of the Europa Lander concept mission where
there is a monotonically decreasing battery supply and large
windows of communication blackouts. In this work, we
present a planning algorithm – HTNSearch-PHRA – that
functions by running an efficient HTN planner on a set of
hypothesized off-nominal scenarios and selecting the plan
with the largest weighted expected utility across all scenarios
to proactively account off-nominal execution. We validate the
approach empirically on a simulated Europa Lander domain
where we compared it against existing baselines across five
different stochastic mission scenarios. We demonstrate that
the approach is more robust to off-nominal deviations and

unexpected scenarios than the existing baselines, having con-
sistently better performance while still being computationally
efficient (running on the order of a few seconds).
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