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Abstract

Planning for autonomous operation in unknown environ-
ments poses a number of technical challenges. The agent
must ensure robustness to unknown phenomena, unpre-
dictable variation in execution, and uncertain resources, all
while maximizing its objective. These challenges are exac-
erbated in the context of space missions where uncertainty
is often higher, long communication delays necessitate ro-
bust autonomous execution, and severely constrained com-
putational resources limit the scope of planning techniques
that can be used. We examine this problem in the context of a
Europa Lander concept mission where an autonomous lander
must collect valuable data and communicate that data back to
Earth. We model the problem as a hierarchical task network,
framing it as a utility maximization problem constrained by
a monotonically decreasing energy resource. We propose a
novel deterministic planning framework that uses periodic re-
planning and sampling-based optimization to better handle
model uncertainty and execution variation, while remaining
computationally tractable. We demonstrate the efficacy of our
framework through simulations of a Europa Lander concept
mission in which our approach outperforms several baselines
in utility maximization and robustness.

Introduction
Planning in domains with large uncertainty and very low
margins for error has long been a challenge in the AI plan-
ning community. While numerous techniques have been de-
veloped over the years, many are rendered impractical or
infeasible by the technical constraints that many physical
robotic systems face. In space-based scenarios, the uncer-
tainty is often higher, the margins for error lower, and the
constraints more severe. Traditional approaches to planning
in space-based domains have consequently utilized deter-
ministic or sampling-based planning methods (Chi et al.
2019; Chi, Chien, and Agrawal 2020) which are fast and
computationally inexpensive, and can be very effective when
paired with a priori expert domain knowledge. Recent work
has investigated how periodic replanning, flexible execution,
and online model updates can be used in conjunction with
search-based deterministic planning to improve the efficacy
and robustness of the overall plans generated and executed
by a space-based robotic system (Wang et al. 2020).

©2021. All Rights Reserved.

Figure 1: An illustration of the Europa Lander concept mis-
sion in which an autonomous lander is tasked with perform-
ing in-situ analysis of sampled surface material and commu-
nicating the collected data to Earth.

While often effective in practice, these approaches do not
actively consider model uncertainty and off-nominal behav-
ior during plan generation, and are hence reactive in how
they handle the uncertainty faced by the system over its
environment. In this work, we propose a planning frame-
work that extends the algorithm from (Wang et al. 2020) by
proactively anticipating deviations from nominal execution
by incorporating domain uncertainty into the plan genera-
tion, creating plans that are more robust to these deviations
without sacrificing solution quality in the nominal case. We
examine the efficacy of our approach in the context of a pro-
posed concept mission in which a lander is tasked with ana-
lyzing surface material to acquire valuable scientific data by
performing in-situ analysis of samples excavated from the
surface of the Jovian moon Europa, and communicating that
data back to Earth (Hand 2017).

This concept mission entails several challenges that dif-
ferentiate it from prior missions. First, a priori knowledge of
the environment is severely limited and uncertain. Second,



the system’s battery supply is finite and non-repletable (i.e.
there is no possible power generation). Third, communica-
tion with Earth is constrained by two factors: (1) due to the
large distance to Earth, there are long communication delays
when communicating with Earth. As a result, ground-in-the-
loop operations cannot be relied on as the system will be
losing battery while waiting for communications and hence
the lander must be capable of operating fully autonomously.
And (2), due to Jovian occlusion, the lander will be faced
with long periodic communication blackouts (roughly 42 out
of every 84 hours) which constrain when the lander is capa-
ble of downlinking the data it has collected to Earth.

As utility is only assigned to data that is acquired and suc-
cessfully downlinked to Earth, and none for data collected
but not downlinked, in order for the Lander to be successful
it needs to carefully manage the trade-off between data ac-
quisition and communication. Furthermore, it must do this
while constrained by a finite and monotonically decreasing
battery supply, limited knowledge of its environment, and
limited communication with Earth. As a result, for the mis-
sion to be successful, the system requires an autonomous
planning and execution framework that is (1) computation-
ally efficient; (2) robust to unprecedented levels of uncer-
tainty; but still (3) capable of maximizing overall utility.

We model the problem as a hierarchical task network
(HTN) (Nau et al. 2003) due to the structured nature of
the tasks that the lander can perform, and consequently use
an anytime heuristic-search algorithm designed for solv-
ing HTNs (Wang et al. 2020) as the primary subroutine of
the proposed approach. Our approach is based on princi-
ples from Hindsight Optimization (HOP) (Chong, Givan,
and Chang 2000) and works by hypothesizing a set of sam-
pled scenarios that the system may face, planning for each
scenario, and evaluating each of the sampled plans’ per-
formances across all scenarios. The plan with the highest
weighted value is selected (this can be viewed as an ap-
proximation to maximizing expected utility). As the plan-
ner is deterministic, we also perform periodic replanning
to ensure that the system’s performance does not devi-
ate too far from expectation. This approach has similar-
ities with determinization-based methods that have been
highly successful in solving large Markov decision pro-
cesses (MDPs) (Yoon, Fern, and Givan 2007; Yoon et al.
2008; Pineda and Zilberstein 2014). While MDPs and other
stochastic sequential decision making models have been had
success in many settings, they are computational expensive
and ill-suited for domains with concurrent actions and con-
tinuous states such as that which is considered in this paper.

We empirically validate our approach in a simulated
Europa-like concept mission. The execution system we
use in our simulations is MEXEC, an integrated planner
and executive first built for NASA’s Europa Clipper mis-
sion (Verma et al. 2017), to better react to variations in
both environment and execution. Finally, to compensate for
both uncertain model priors and the deterministic nature of
the planner, the framework replans on a periodic basis. We
present empirical results against two base-line approaches
similar to those used in prior missions: a greedy planner
with replanning and an anytime heuristic-search based plan-

ner with replanning. We show that the proposed planning
framework, HTNSearch-PHRA, is more effective on aver-
age and more robust to uncertainty across five different mis-
sion scenarios. In addition, we analyze the effect of increas-
ing the size of the hypothesized scenario set by comparing
the performance of the algorithm with four different sets of
hypothesized scenarios.

Problem Description
Domain Overview
The primary goal of the Europa Lander concept mission is
to excavate and sample the moon’s surface, analyze the sam-
pled material for signs of biosignatures, and communicate
that data back to Earth (Hand 2017). Additionally, there are
secondary objectives to take panoramic imagery of the Eu-
ropan surface and collect seismographic data. Lander oper-
ations are therefore limited to primary objective tasks, sec-
ondary objective tasks, and data communication. This pro-
vides significant structure to the problem, since the concept
mission clearly defines the sequence of actions required to
achieve these goals. Figure 2 displays an example of a po-
tential execution trace of tasks that satisfies the minimum re-
quirements of the mission, and illustrates the inherent struc-
ture of the concept mission amongst the possible tasks.

As a minimum requirement, the lander should excavate
a trench in the Europan surface, collect three samples from
that site, analyze those samples, and communicate that data
to Earth. The basic requirements of a mission would require
only a single site to be excavated. However, there is value in
excavating additional sites, because the material at different
sites may possess different properties. In addition, the lander
may choose to resample the same location to, for example,
verify the discovery of a biosignature at that location. In the
baseline concept mission, all three of the lander’s samples
are chosen from the same target. Note that after the first site
is excavated, no further excavations are needed to sample
from that trench; all three sampling activities can share a sin-
gle excavation site. After excavation and sample collection,
samples must be transferred into scientific instruments that
analyze the material and produce data products. Then, for
a mission to achieve any actual utility, those data products
must be communicated back to Earth. Because communica-
tion is difficult and energy intensive, the lander may choose
to compress data lossily which reduces both the energy re-
quired to communicate the data and its utility, if the expected
utility of this action is higher.

In addition to sampling tasks, the lander may engage
in seismographic data collection and period panoramic im-
agery tasks. These are considered lesser goals, with lower
utility associated with their completion. As such, the data
products that these tasks generate are considered to have
lower value. However, these tasks also involve no surface
interaction, and have less uncertainty associated with them.

It is important to note that utility is only achieved when
data is downlinked back to Earth. This is true for both the
sampling and seismograph/panorama tasks. Some excava-
tion sites or sampling targets may provide more utility than
others if, for example, one of those targets has a positive



Figure 2: An illustration of a potential execution trace of an example task network for the Europa Lander concept mission that
satisfies the minimum requirements of the mission.

biosignature and the other does not. However, regardless of
the quality of the material that the lander samples, no util-
ity is achieved unless that data is communicated. This dy-
namic means that while potential utility is generated during
the sampling and analysis phases, it is only realized by com-
pleting relevant communication tasks.

The Europa Lander concept mission is also constrained
by a finite battery that cannot be recharged. Battery life is
a depletable resource, and the lander must use its energy
as efficiently as possible. Each task – including sleeping –
consumes energy from the battery, and the algorithm must
plan accordingly to maximize utility in the face of this con-
straint. In addition to this challenge, the surface character-
istics of Europa are uncertain, and any prior mission model
that is generated before landing are assumed to be inaccu-
rate. In particular, the energy consumption of the excava-
tion and sample collection tasks is largely unknown. There
is also significant variation in the utility of any given sam-
ple, since the value of sampling a given target on Europa
depends on whether the material is scientifically interesting,
e.g. whether a biosignature is present.

Problem Formulation
We model this problem using a hierarchical task network
(HTN) to compile the domain-specific knowledge of the de-
pendency structure into the task network. HTNs have been
used successfully in industrial and other real-world applica-
tions to improve the tractability of planning problems in sys-
tems such as SHOP2 (Nau et al. 2003) and SHOP3 (Gold-
man and Kuter 2019). In an HTN, hierarchical tasks are de-
composed into a set of subtasks. We refer to the higher-level
tasks as parent tasks, and refer to their children as subtasks.
Parent tasks may decompose into a number of different par-
tially ordered sets of subtasks; we refer to each of these

sets as a potential decomposition of that parent task. Finally,
we refer to tasks with no decompositions as primitive tasks.
These primitive tasks represent tasks that the lander can be
directly commanded to perform. Decompositions enable us
to significantly reduce the planning search space as we can
treat all subtasks of a parent task as a singular block during
the planning process; for example, the model treats “exca-
vate, sample, transfer, analyze” as a single unit and sched-
ules the subtasks accordingly.

Formally, an input to the problem is a set T =
{T1, ..., Tn} and a system state S. Each Ti is a task that is
represented by the tuple 〈pi, di, ei, ui, si, Ci,Wi, Di〉 where
pi is the priority of the task, di is the expected duration
of the task, ei is the expected rate of energy usage by the
task, ui is the expected utility of the task, si is the pre-
ferred start time of the task, Ci is the set of constraints
that must be satisfied for the task to be scheduled, Wi =
{[ti1, ti2], ..., [tin−1, tin]} is the set of time windows that the
task can be scheduled in, andDi = {Ti1, ..., Tim} is the par-
tially ordered set of decompositions of the task, which can
be empty if Ti is a primitive task. The state S is represented
by a collection of continuous and discrete features including
the remaining battery supply, the current data load, the cur-
rent time, and all features required to model task constraints.

There are four main parent task types in the mis-
sion model. The first is a Preamble which consists
of post-landing initialization and other one-time initial-
ization tasks, and must be executed immediately upon
landing. Second are data acquisition tasks which con-
sist of excavation, sample collection, sample
transfer, and sample analysis tasks. Excavation
can take place in one of three excavation sites, and may
be skipped if a site has previously been excavated. For col-
lection tasks, the lander may choose between one of sev-



eral collection targets at any given excavation site (repeated
sampling of the same target is allowed with no penalty).
The analysis task returns the dataload acquired from a
given sample upon completion; dataload represents the max-
imum potential utility that the acquired data provides upon
successful downlink to Earth. Third, there are Seismo-
graph/Panorama tasks which consist of seismographic
data collection and panoramic image data
collection; these tasks provide less data but are more
reliable in their execution. Fourth is the communication
task which decomposes into either a single, or a sequence
of two, communication(s), either of which can be of raw
data or compressed data. In this problem, we assign util-
ity solely to the successful completion of a communication
task, where communicating raw data provides greater utility
but consumes more energy than communicating compressed
data; note that both communication tasks consume the same
amount of dataload. Utility is assigned to tasks a priori but
we note that in practice may likely be updated online as new
information is obtained by the system.

Approach
The underlying planning method employed in this approach
relies on heuristic search. Search-based planning algorithms
have been popular for a number of years as they (1) do not
require that the full state space is evaluated to produce a so-
lution (Hansen and Zilberstein 2001), (2) are often anytime
algorithms that can return a solution at any point during run-
time (Zilberstein 1996), and (3) can easily leverage heuris-
tics to reduce the computational burden while still achieving
high performance (Bonet and Geffner 2001; Hoffmann and
Nebel 2001; Korf 1990). In this case, all three of these prop-
erties are highly desirable, and influenced our decision to
utilize a heuristic search-based planning algorithm.

Heuristic HTN Search
The main planning algorithm, Algorithm 1, relies on the
heuristic search approach for solving HTNs described
in (Wang et al. 2020) – which we henceforth refer to as
HTNSearch – as its primary subroutine. We offer a brief
discussion of their algorithm.
HTNSearch first performs a pre-processing step in

which all task decompositions are flattened into a single
layer so that parent tasks are simply linear chains of primi-
tive tasks. By flattening the decompositions, we can assign
specific utility and energy values to each parent task as there
is no ambiguity over which decomposition it is represented
by. Note that this step can be performed offline and only
needs to be performed once.

Next, HTNSearch initializes the search graph on the
newly flattened task network, where nodes hold partial plans
and edges hold (flattened) task decompositions or primitive
tasks. As the algorithm is deterministic, both the cost and
utility associated with any node is the sum over the tasks in
the partial plan for the respective value. Finally, the algo-
rithm performs a heuristic branch and bound search proce-
dure over the search graph where the search is bounded by
both the feasibility of partial plans (their total energy cost

cannot exceed the current battery supply, and the plan ad-
heres to inter-task constraints), and optional computational
constraints on the number of explorable nodes. For any plan
and decomposition pair, (P, d), a density based heuristic
value of utility(P ) + utility(d)

cost(d) is used and ties are broken
in favor of lower cost.

The main limitation of this approach, which drives the
motivation for Algorithm 1, is that it is a deterministic al-
gorithm for a non-deterministic domain. In other words, the
plan that is produced assumes that the future will operate
exactly according to expectation. (Wang et al. 2020) ad-
dress this issue primarily through the use of online model
updates and frequent replanning to ‘course-correct’ the sys-
tem online. This idea is similar to that of determinization-
based approaches for solving very large Markov decision
processes, such as FF-Replan (Yoon, Fern, and Givan 2007),
which have been shown to perform well in the MDP set-
ting, particularly in the infinite horizon case, but are not
robust to dead-ends. Hence, we propose a planning algo-
rithm that proactively considers off-nominal behavior and
execution during plan time, rather than just reactively re-
sponding to off-nominal behavior and execution. We demon-
strate through empirical evaluations that our approach is in-
deed more robust to off-nominal scenarios than the standard
heuristic search, performing as well or better in both positive
and negative scenarios.

HTNSearch with Post Hoc Robustness Analysis
The proposed planning algorithm, the pseudocode for which
can been seen in Algorithm 1, is intuitively straightforward.
The algorithm takes in as input an instance of the Europa
Lander problem modeled as a hierarchical task network, T ,
and begins by producing a set of hypothesized scenarios via
the subroutine hypothesizeScenarios (line 3). The function
hypothesizeScenarios takes in the current task network that
is being planned on and the system’s current state, and re-
turns a set of hypothesized scenariosH. A scenario, h ∈ H,
is comprised of an initial state and an instantiation of the pa-
rameterized domain. This function is left general as its im-
plementation will be both domain and purpose specific. For
example, in our simulations we hypothesize multiple scenar-
ios where the current battery life of the lander is varied up or
down to represent the uncertainty over the “true” battery life
of the lander. However, other parameters may be varied such
as the time or energy to perform various tasks, the likelihood
of positive data from different samples, or the possibility of
excavated sites collapsing. These scenarios may be devel-
oped using expert knowledge a priori, or may be generated
online by drawing from distributions that parameterize the
domain model.

For each hypothesized scenario h ∈ H, the algorithm first
instantiates h by updating the relevant parameters of T , and
calls HTNSearch on the newly instantiated task network to
produce the best-found plan P (lines 5-7) within the com-
putational constraint. The plan P is evaluated on each sce-
nario h′ ∈ H by computing the expected utility following
P , V P(T , h′) (line 10) using a stochastic execution graph
subroutine. The observed expected utility is weighted by a



Figure 3: An illustration of the HTNSearch-PHRA algorithm. A tasknet, T , and a set of hypothesized scenarios, h1, ..., h|H|,
produce set of instantiated task networks, T1, ..., T|H|. Each Ti is comprised of the input task network with certain parameters
modified by the scenario; for instance the current state of the system or the cost and utility of various tasks. The planning
algorithm, HTNSearch, is ran on each Ti to produce a plan, Pi that is the best plan found for that instantiated task network.
Each plan, Pi is evaluated on all Ti to produce a cumulative score that is comprised of a weighted sum of expected utilities,
where the weights are determined by the likelihood of the hypothesized scenario. The plan that has the highest score, P∗, is
returned.

function getScenarioWeight and the weighted value is added
to the total score of the plan, µP (9-10). Finally, the plan that
had the highest total score is returned.

The function getScenarioWeight returns a real valued
number in [0, 1], given an HTN and a scenario. In our case,
we compute the Legendre-Gauss quadrature weights assum-
ing that the parameters relevant to the hypothesized scenar-
ios are normally distributed. In general we believe that any
relative likelihood-based weighting scheme will work, how-
ever we note that offline optimization of these weights may
be worthwhile particularly when the scenarios considered
are over multiple different task network parameters.

We compute the expected utility of the plan P using a
stochastic subroutine that builds the non-deterministic exe-
cution graph of P given the distributions which parameter-
ize the task network (energy cost, duration, data, and utility).
Computing the expected utility of a deterministic plan in a
stochastic domain is significantly cheaper than computing a
fully stochastic policy in the first place, and still allows us to
observe a more accurate evaluation of each plan.

Finally, as the HTN search algorithm dominates the other
subroutines in terms of runtime complexity, the runtime of
Algorithm 1 is ∼ |H| times the runtime of HTNSearch
when |H| is small. However, as |H| grows, the computation
spent evaluating plans grows at a rate of O(|H|2). Further-
more, there are diminishing returns to increasing the num-
ber of hypothesized scenarios considered, particularly when
adding very low likelihood scenarios to H. An analysis of
this can be found further in the paper. Ultimately, the prob-
lem of determining which, and how many, scenarios to in-
clude inH is an important element in balancing the trade off
between efficiency and effectiveness.

Algorithm 1: HTNSearch-PHRA
Input: A hierarchical task network T and state s
Result: A plan P∗

1 P∗ ← None
2 µ∗ ← −∞
3 H ← hypothesizeScenarios(T , s)
4 for h ∈ H do
5 T̂ ← instantiateScenario(T , h)
6 P ← HTNSearch(T̂ )
7 µP ← 0
8 for h′ ∈ H do
9 γ ← getScenarioWeight(T , h′)

10 µP ← µP + γV P(T , h′)
11 end
12 if µP > µ∗ then
13 P∗ ← P
14 µ∗ ← µP ;
15 end
16 end
17 return P∗

Experiments
Experimental Setting
To evaluate the performance of Algorithm 1, we com-
pared against two baselines: HTNSearch and GREEDY. In
GREEDY, priorities were assigned a priori to each task de-
composition, and the planner greedily attempts to schedule
tasks in order of priority at each planning cycle, skipping
over tasks if they cannot be scheduled due to conflicts or vio-
lated constraints. Priorities are assigned offline using a com-



Figure 4: Utility achieved by each planning algorithm on all
five scenarios. Values shown are mean and standard error
over 10 trials.

bination of hard-coded domain knowledge (e.g. the Pream-
ble must have the highest priority) and Monte carlo trials on
sampled priority orderings across the input task.

The domain used for our simulations is described in Sec-
tion 2. We recall a few key points here. First, the system is
tasked with excavating the surface of the moon, collecting
samples to analyze which produces data, and then commu-
nicating that data back to Earth. Only data that has been suc-
cessfully communicated provides utility. Second, the agent’s
battery supply is consumptive and non-rechargeable, and the
system maintains a base Hotel load – a constant energy us-
age – even when sleeping. Third, communication with earth
is only possible in cycles due to Jovian occlusion (every
other 250 time units in our simulations). Consequently, the
system must be able to effectively manage a monotonically
decreasing battery supply and fixed time windows for com-
munication, while still performing tasks that produce data,
to actually receive any utility. Furthermore, it must execute
these tasks in a domain with large a priori uncertainty.

We therefore considered 5 different stochastic scenarios:
(1) Nominal, (2) Low Energy, (3) High Energy, (4) High
Consumption, (5) Low Consumption. In scenario (1) there
are no off-nominal, or unexpected, events or behaviors that
occur during simulation. In scenarios (2) and (3) there is a
sudden change (±20%) in remaining battery life that occurs
500 time units into the simulation as the battery recalibrates.
In scenarios (4) and (5) energy is stochastically drained or
added to the observed remaining battery supply at every
state update. In all scenarios, task parameters such as en-
ergy rates, duration, and data load are all drawn from low
variance Gaussians centered around pre-determined means
at runtime. Each scenario was simulated 10 times for each
planning algorithm to account for this execution variation.

In these experiments, we specifically focused on off-
nominal variations on remaining battery for three reasons.
The first is that, historically, battery measurements have
come with large uncertainty. The second is that battery is
the most valuable resource in this domain, as time only mat-

ters in that there is a constant minimum Hotel load, and zero
remaining battery supply is a terminal absorbing state. The
third reason is that deviations in battery supply or energy
consumption act as direct proxies for most other off-nominal
behavior (extra time to complete a task, getting stuck, failing
to perform a task requiring it to be repeated, etc.). However,
the algorithm presented is not relegated to such a constraint,
and in general can capture arbitrary scenarios.

Experimental Results
The main results of our experiments can be seen in
Figures 4 and 5. The first experiment compares the perfor-
mance of three algorithms: GREEDY, HTNSearch, and
HTNSearch-PHRA(3). The second experiment compares
the performance of four variations of HTNSearch-PHRA,
where the size of the hypothesized scenario set is increased:
HTNSearch-PHRA(1), HTNSearch-PHRA(3),
HTNSearch-PHRA(5), and HTNSearch-PHRA(7).

Cross-Method Comparison Figure 4 shows the mean and
standard error of the utility achieved by each planning al-
gorithm across the five planning scenarios. GREEDY per-
forms well when the scenario is an optimistic scenario as
the system ends up with enough battery to perform all of
the high priority tasks without issue; in particular this means
sampling more than the other approaches as GREEDY does
not perform the more conservative actions such as Seis/Pan
which produce less data but are more stable tasks. However,
in the pessimistic scenarios, where the battery supply ends
up being less than expected, GREEDY performs extremely
poorly, using up too much energy early on in the mission
sampling new targets to collect data, leaving insufficient en-
ergy to communicate all of the data back. This demonstrates
the brittleness of a greedy approach in the context of a do-
main with large uncertainty.
HTNSearch performs well overall, and notably better

than Greedy, as expected based on the results from Wang et
al. (Wang et al. 2020). However, because its plans are always
conditioned on nominal behavior and a lack of unexpected
events, it is always reacting to off-nominal deviations, lead-
ing to poorer results in both the Low Energy (LE) scenario
and the High Consumption (HC) scenario. Notably, the per-
formance is better in the High Consumption scenario, where
the negative impact on on the battery supply is constant but
small, than in the Low Energy scenario where the impact is
large, sudden, and unexpected. The former scenario allows
for constant reactive replanning to work as a viable strategy
for managing the off-nominal performance, but if too much
energy has been spent prior to encountering the sudden drop
in battery supply in the latter scenario, there is no recourse
for the system. The performance in the optimistic scenarios,
High Energy and Low Consumption, indicate that the sys-
tem is able to communicate an extra dataload on average in
the low consumption case. Similar to above, we believe that
the reason for this is that the system can constantly react to
the small increases in battery supply in the Low Consump-
tion scenario, but cannot plan to take advantage of the “ex-
cess” energy it encounters in the High Energy case.

On the other hand, HTNSearch-PHRA, which proac-



Figure 5: Utility achieved by Algorithm 1 with |H| = 3, 5,
and 7 respectively, on all five scenarios. Values shown are
mean and standard error over 10 trials.

tively selects plans that are robust to low-energy hypoth-
esized scenarios, is more robust to the negative condi-
tions, producing more utility on average in both the Low
Energy and High Consumption scenarios. The difference
here is more significant in the Low Energy scenario as
HTNSearch-PHRA can proactively plan for having less
energy, and does not just react to the latest observations and
state updates. However, the performance is still greater in
the High Consumption scenario because it can constantly
respond to the small off-nominal deviations in behavior,
and though it selects plans that are robust to high en-
ergy scenarios, it does not know that such a scenario will
occur until it has. In the optimistic scenarios where en-
ergy is more abundant than expected, both HTNSearch
and HTNSearch-PHRA perform comparably as they are
both able to make use of the excess battery supply, hav-
ing achieved higher utility than in the Nominal scenario.
As above, however, our algorithm performs better in the
High Energy case as it proactively creates plans robust
to similar situations. Finally, it is worth emphasizing that
HTNSearch-PHRA also performed comparably – up to
noise – to HTNSearch in the Nominal scenario where the
base task network that is used by HTNSearch is correct
(up to stochasticity). This means that our approach, although
sensitive to off-nominal scenarios, does not sacrifice perfor-
mance quality in the nominal case as well.

Overall, these results demonstrate that the proposed al-
gorithm performs comparably or better to each baseline ap-
proach in all scenarios tested, but the benefits are most no-
table in scenarios where the deviations are large and sud-
den, rather that small and frequent, as both search-based
algorithms have the ability to respond to the latter events
via replanning in order to “course correct”, and in pes-
simistic scenarios where off-nominal behavior hurts perfor-
mance rather than aids. This is because the reactive approach
can always benefit from extra battery supply as the excess
is observed, but can not always bounce back from energy
deficits. However, proactively producing plans that are sen-

sitive to both these scenarios ensures that the system fol-
lows a plan that never performs too poorly in any hypothe-
sized scenario, while also retaining the benefits of reactively
course-correcting.

Analysis of H on the Quality of HTNSearch-PHRA If
we consider the results from Figure 5, we observe that in-
creasing the size of the hypothesized scenario set can lead to
improved performance, but not always and not to a large ex-
tent (up to noise). We suggest that the reason for this is that
hypothetical scenarios with low likelihood – particularly in
this case where none of the scenarios consider critical fail-
ures – impact the score of each generated plan to a suffi-
ciently low degree that plans generated for low likelihood
scenarios are never actually selected to be scheduled. This
issue may be compounded by the fact that each hypothesized
scenario alters the same parameter, namely battery supply.

The reason that HTNSearch-PHRA(5) and
HTNSearch-PHRA(7) perform better than
HTNSearch-PHRA(3) in the energy based scenar-
ios compared to the consumption based scenarios is likely
that the ability to constantly course correct in response
to small observed deviations dominates the effect of
considering low-likelihood scenarios during the planning
phase. However, if we consider scenarios (N) and (HC),
HTNSearch-PHRA(5) and HTNSearch-PHRA(7)
actually perform worse than the other two. The reason
for this is that the plans selected are too conservative –
on account of being scored on low likelihood negative
outcomes – and end up costing utility over the course of the
full problem horizon.

In the future, we plan to analyze in greater depth whether
it is possible that using a more diverse portfolio of hypothet-
ical scenarios could lead to overall improved results, and if
so, whether only scenarios of sufficient likelihood need even
be included in H to have a meaningful impact. As the run-
time of the algorithm scales with the size of H, ensuring
that |H| is small while still covering a sufficient set of off-
nominal scenarios is important for an effective mission.

Related Work
Onboard planning and execution are of great interest to
the space domain. The Remote Agent was an architecture
for onboard planning and execution addressing remote au-
tonomous operation with deadlines, resource constraints,
and concurrent activities (Muscettola et al. 1998). The
Remote Agent flew for 48h in 1999 on the Deep Space
One spacecraft using a batch planner that took hours on a
RAD6000 CPU to generate a temporally flexible plan that
was then used by a reactive executive controller (Pell et al.
1997) to provide robust plan execution. The planner used
a refinement search paradigm (Jónsson et al. 2000) to con-
struct a temporally flexible plan but did not consider utility
in plan generation and did not perform continuous replan-
ning due to the computational expense and long planning
time (indeed the replans were scheduled in the prior plan).

The Earth Observing One (EO-1) spacecraft (Chien et al.
2005), which flew for over 12 years from 2004-2017, was
designed specifically to react to dynamic scientific events.



Planning was performed by the CASPER planning soft-
ware (Chien et al. 2000), which took on the order of 10s
of minutes to replan but did not produce temporally flexi-
ble plans. To address this, the onboard executive (SCL) was
able to flexibly interpret the execution of a plan to handle
minor execution runtime variations. The flight and ground
planners (Chien et al. 2010) both used a domain specific
search algorithm that enforced a strict priority model over
observations for limited model of utility. This scenario is
similar to that proposed in this paper, in which the lander
must react to dynamic events and observations in order to
maximize its utility, while still adhering to both mission and
spacecraft constraints. Recently, the Intelligent Payload Ex-
periment (IPEX) also successfully used the CASPER plan-
ning software to achieve its mission objective, further vali-
dating the efficacy of using onboard replanning to handle dy-
namic events and observations during operation even when
the plans are not temporally flexible (Chien et al. 2017).

The M2020 Perseverance rover also flies an onboard
planner (Rabideau and Benowitz 2017) to reduce lost
productivity from following fixed time conservative plans
(Gaines et al. 2016). The M2020 planning architecture re-
lies on rescheduling and flexible execution (Chi et al. 2018),
ground-based compilation (Chi et al. 2019), heuristics (Chi,
Chien, and Agrawal 2020), and very limited handling of
planning contingencies (Agrawal et al. 2019). However,
many characteristics of the M2020 mission are fundamen-
tally different from the concept mission we consider here,
such as the lack of reliable a priori model parameters, the
non-repletable battery, and the long communications black-
out time windows incentivizing greater mission autonomy.

Due to the presence of continuous state variables and
the necessity of modeling concurrent actions, we find that
stochastic planning models such as MDPs do not support
our problem domain well while still being efficient to solve.
Instead, as our problem has additional structure in how tasks
are conditioned, we represent our model as a hierarchical
task network (HTN). Hierarchical task networks have been
extensively studied over the last several years as efficient
models for planning in highly structured domains where
expert knowledge can be embedded directly into the plan-
ner (Kuter et al. 2009; Macedo and Cardoso 2004).

Several planning algorithms have been proposed for solv-
ing HTNs (Erol, Hendler, and Nau 1994; Nau et al. 2003;
Kuter et al. 2005). The subroutine that is used in Algo-
rithm 1, HTNSearch, is most similar to SHOP2 (Nau et al.
2003). However, while SHOP2 selects task nondeterministi-
cally from the available task at each iteration of the planning
loop, HTNSearch does not commit to a task but instead
heuristically searches the tree of (partial) plans and deter-
ministically selects the highest utility node found.

While the motivations and ideas of our approach are sim-
ilar to the area of robust optimization and uncertainty sets,
our work differs from prior work (Ben-Tal, El Ghaoui, and
Nemirovski 2009; Bertsimas and Brown 2009) in two key
aspects. First, robust optimization is a method for avoiding
solutions to convex optimization problems that end up be-
ing infeasible in practice due to the realizations of uncertain
parameters. However, as our problem is an indefinite plan-

ning problem (and replanning is not modeled as part of the
planning problem), formulating it as a convex optimization
problem is not straightforward. Second, uncertainty sets are
often built from sampled data in the absence of well-defined
priors; however, in our case, we assume the existence of
well-defined priors over the uncertain parameters (e.g. bat-
tery life). We do not use these distributions during planning
as full stochastic planning is intractable given the computa-
tional resources of the lander.

Conclusion
Planning and scheduling tasks in the presence of large a
priori uncertainty is a challenging problem for space-based
missions. The plans need to be robust and effective while not
risking compromising system safety or mission success even
in the face of domain uncertainty and severe computational
constraints. These issues are exacerbated in the context of
the Europa Lander concept mission where there is a mono-
tonically decreasing battery supply and large windows of
communication blackouts. In this work, we have presented
a deterministic planning algorithm – HTNSearch-PHRA
– that functions by creating a set of hypothesized scenar-
ios, running an efficient HTN heuristic search planner for
each scenario to produce a set of plans that are then each
evaluated across all hypothesized scenarios, and returning
the plan that performed the best overall. We validated the
approach empirically on a simulated Europa Lander do-
main where we compared it against existing baselines across
five different stochastic mission scenarios. We demonstrated
that the approach is more robust to off-nominal deviations
and unexpected scenarios than the existing baselines, hav-
ing consistently better performance while still being compu-
tationally efficient (running on the order of a few seconds).

There are several topics of consideration for future work.
So far, we have tested HTNSearch-PHRA only in the con-
text of varying a single scenario parameter: battery sup-
ply. The natural next step is to observe how our algorithm
performs when varying other parameters such as task fail-
ures, sample target data loads, communication efficiency,
task utilities, and catastrophic events. Second, we provided
empirical evidence that increasing the number of hypothe-
sized scenarios, at least when only a single parameter is var-
ied, has diminishing returns with respect to utility but grows
quickly in runtime. In the future, we would like to perform
a more rigorous analysis of the conditions under which in-
creasing the set of hypothesized scenarios will be beneficial,
or identify if there are conditions under which new hypoth-
esized scenarios will not impact the results of the algorithm.
Finally, we would like to perform more empirical evalua-
tions of our algorithm on a wider set of mission scenarios
where the system can perform online model updates as it
makes observations that enable it to update it model priors.
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