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Abstract

As mobile robots are deployed in increasingly com-
plex domains in the open world, the level of detail
demanded by the robot’s decision-making model
to ensure reliable operation increases. To support
this, mobile robotic agents are fixed with a wider
array of more informative sensor equipment and
downstream perception systems that convert such
sensors’ information into usable representations by
the agent’s planning models. Automated decision
making models often assume free and consistent
access to such information. However, in the con-
text of a mobile robot, this assumption may not
hold, and failing to account for this in the plan-
ning model may lead to costly behavior or even
failure. In this paper, we propose a mixed open-
loop/closed-loop planning model based on memory
states that integrates knowledge about limitations
on sensory feedback in order to proactively plan
around these limitations or exploit situations where
costly sensing is unnecessary. We provide both the-
oretical properties as well as empirical evaluations
on a simulated mobile robot domain.

1 Introduction
As AI and robotics have advanced in recent years, attention
has shifted from the deployment of mobile robotic agents
in well-understood stationary domains to deployment in the
complex and dynamic “open world”. The increased com-
plexity and uncertainty that the open world exhibits often de-
mands a more finely detailed model of the domain to ensure
reliable performance by the system. This includes ensuring
system safety [Svegliato et al., 2019], adhering to ethical con-
straints [Svegliato et al., 2021], understanding and managing
system competence [Basich et al., 2020], and mitigating neg-
ative side effects [Saisubramanian et al., 2020].

However, common to these approaches, and most work in
automated decision making, are the following (often implicit)
assumptions on the sensory feedback which provides the state
information necessary for planning and control: (1) the feed-
back is free or has negligible cost compared to control; (2) the
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feedback is available on-demand; and (3) the feedback is reli-
able, by which we mean that it delivers an accurate (possibly
incomplete) representation of the agent’s environment. Un-
fortunately, in the open world, this assumption can not only
be invalid, but can lead to costly erratic behavior and critical
failures when violated [Rabiee and Biswas, 2019].

In general there are several reasons why these assumptions
may not hold. Sensory feedback may be available but have
a non-negligible cost that makes using it cost-ineffective; for
example, an extraterrestrial science robot may have a finite
and non-repletable battery supply which sensing actions con-
sume [Dooley, 2018]. Alternatively, sensory feedback may
simply be unavailable at various times during a system’s de-
ployment due to technical limitations or by design; for ex-
ample, GPS may be unavailable while underground. Finally,
sensory feedback may be available, and even free, but may
provide unreliable information that is no better than no infor-
mation, or worse, that is actively misleading; for example, in
the presence of glare, an object in front of the robot may fail
to be detected. Recent work in introspective perception has
looked into using a secondary system to learn and monitor
this behavior [Daftry et al., 2016].

Consequently, while there are many facets to the problem
of reliable autonomy in the open world, for autonomous de-
cision making systems that depend on sensory feedback to
update their internal state in order to act appropriately, it is
necessary that they operate effectively even in the face of one
of the aforementioned constraints. Such an agent should be
able to operate reliably when faced with unanticipated limita-
tions on sensory feedback, proactively plan around known or
expected situations of limited sensory feedback, and exploit
cases where sensory feedback is unnecessary.

To this end, we propose a general way to integrate per-
ception reliability information derived from an introspec-
tive perception system into an existing planning model. We
map states where perception is deemed unreliable to memory
states in a separate augmented planning model, which have
well-defined transition and cost dynamics analogous to belief
states in a POMDP [Shani et al., 2013]. This model enables
the agent to perform open-loop planning when reliable per-
ception is unavailable or is deemed cost ineffective, avoiding
the need to automatically query an expensive supervisory sen-
sor. By utilizing a mix of closed-loop and open-loop planing,
the agent can better optimize its performance in the face of
limited sensory feedback. To be able to handle the combi-



natorial increase in model size induced by the inclusion of
memory states, we introduce an admissible heuristic that sig-
nificantly outperforms its naive baseline counterpart. We fur-
ther prove that allowing for longer open-loop sequences can
never worsen expected performance. Finally we provide em-
pirical evaluations of a simulated agent’s behavior.

2 Related Work
Most closely related to our work is that of Hansen et al.
[1996], which introduces the notion of a memory state, a rep-
resentation of the knowledge needed by the agent to infer its
current state in its domain, and mixed open-loop and closed-
loop control in the context of reinforcement learning. Our
work generalizes that earlier work by considering a variety of
sensor failure modes, sensor unavailability, or prohibitively
expensive sensor information. Earlier work was designed for
situations where sensing is available at a non-zero cost at ev-
ery timestep, but when the agent takes a control action, it de-
terministically stays in a memory state. In this paper, we ex-
tend the approach to a wide variety of sensor limitations. For
example, the agent may have access to free imperfect per-
ception, but may alternatively take a costly action to query a
supervisory sensor to transition from a memory state to a re-
liable state. Additionally, we allow for the possibility of nat-
urally transitioning from a memory state to a fully observed
state in the modeled domain without querying the supervi-
sory sensor in the case where reliable perception naturally
becomes available again after a period of sensor failure or
unavailability.

Early work on anytime sensing [Zilberstein, 1996] demon-
strated the ability to adapt sensing effort to the needs of the
planning and execution architecture, so that less precise—and
less costly—sensing is performed whenever it is sufficient
for effective operation (e.g., navigating through uncluttered
space). Unlike our proposed approach, the sensor reliability
in this line of work is directly controlled by the time alloca-
tion to the anytime sensing process.

Active perception [Bajcsy et al., 2018] is another related
area of research that has received significant attention over the
last several decades. Active perception is concerned with the
problem of designing and managing perception systems that
are themselves active dynamic systems that can be altered or
can change their behavior online as a means of influencing the
information received by the acting agent, and ultimately said
agent’s behavior [Bajcsy, 1988]. In fact, it is readily observed
that the question faced by Hansen et al. [1996] of “to sense or
not to sense” is itself a form of active perception. Although
this work is primarily focused on the question of handling
failure cases of perception through decision making, rather
than modulating perception itself, we believe that approaches
in active perception are symbiotic with what we present here
and presents interesting directions for future research.

Addressing perception uncertainty and failures that can
arise as a consequence has also been studied in recent years.
Kaipa et al. [2016] investigate how perception uncertainty in
robotic bin-picking can induce various failure modes which
can propagate error through each stage of task execution, and
propose an approach to characterize the perception uncer-

tainty driven failures to determine if the robot should query
for human intervention or to invoke one of a number of spe-
cific planners used for fine-motion strategies that improve ac-
curacy at the cost of completion time.

Hanheide et al. [2017] propose an approach for enabling
a robotic agent acting in a domain with uncertain sensing,
uncertain actions, and incomplete information about its en-
vironment to methodically gather the information required to
accomplish its task. However, their work primarily addresses
an a priori lack of information and domain knowledge, and
assumes constant and free access to an array of sensory feed-
back for various perceptual systems. In this sense, their ap-
proach focuses on building a coherent model of the agent’s
domain while avoiding failures, and ultimately accomplish-
ing its task as efficiently as possible, and hence has more sim-
ilarities to model based reinforcement learning and partially
observable Markov decision processes.

More recently, Lee et al. [2020] have investigated the prob-
lem of a robot that is given a model-based policy, but can de-
tect when there is large uncertainty in its perception and ac-
tuation systems indicating that its given policy may be unre-
liable and should not be applied. To address this, the authors
use a policy-optimization approach to learn a local policy on
raw sensory inputs in areas of large uncertainty in place of
the model-based policy. As their approach fundamentally re-
lies on consistent sensory information, it cannot be directly
applied to the specific problem studied in this paper.

Finally, introspective perception is a recent, rich line of
work that allows a robot to “know when it doesn’t know”
by modeling the uncertainty and quality of the outputs of its
perception systems [Daftry et al., 2016; Rabiee and Biswas,
2019]. Hence, this work offers complementary planning ca-
pabilities that can work with introspective perception.

3 Background
The primary objective of this work is to capture various forms
of incompleteness or inconsistency in sensory feedback, ei-
ther intended or unintended, and integrate them into a pri-
mary planning model in order to proactively handle these phe-
nomena. We use a fully observable planning model, called a
stochastic shortest path problem, to represent the base do-
main for several reasons. First, we explicitly assume that all
information received from perception that is deemed reliable
by an introspective perception system is fully observable; that
is, it completely reveals the state to the agent. Second, any in-
formation received that is deemed unreliable is equivalent to a
null observation in that it provides no state information to the
agent. Finally, partially observable models which can capture
similar issues of perception uncertainty, and are strict gener-
alizations of the model we use, are significantly less tractable
to solve than their fully observable counterparts. And, as they
do not exploit problem specific information and assumptions,
their use does not provide additional utility in the problem
considered in this work.

A stochastic shortest path problem (SSP) is represented by
the tuple 〈S,A, T,C, s0, sg〉where S is a finite set of states,A
is a finite set of actions, T : S×A×S → [0, 1] represents the
probability of reaching state s′ ∈ S after performing action



a ∈ A in state s ∈ S, C : S × A → R represents the
immediate cost of performing action a ∈ A in state s ∈ S,
s0 ∈ S is an initial state, and sg is the goal state such that
T (sg, a, sg) = 1 ∧ C(sg, a) = 0 ∀a ∈ A.

A solution to an SSP is a policy π : S → A that indicates
that action π(s) ∈ A should be taken in state s ∈ S. A policy
π induces the state-value function V π : S → R

V π(s) = C(s, π(s)) +
∑
s′∈S

T (s, π(s), s′)V π(s′)

that represents the expected cumulative cost V π(s) of reach-
ing the goal state sg from state s following the policy π, and
the action-value function qπ : S ×A→ R

qπ(s, a) = C(s, a) +
∑
s′∈S

T (s, a, s′)V π(s′)

that represents the expected cumulative cost of reaching the
goal state sg from state s given that the agent takes the action
a in state s and follows the policy π thenceforth.

Any policy that minimizes these functions is referred to as
an optimal policy. Without loss of generality we may assume
that the optimal policy, denoted π∗, is unique unless explic-
itly stated otherwise. Given π∗, we can define the optimal
state-value function following policy π∗ using the Bellman
optimality equation as follows

V ∗(s) = min
a∈A

[
C(s, a) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)
]

= min
a∈A

q∗(s, a)

where q∗ is the action-value function under the policy π∗.
Central to our approach is the concept of a memory

state [Hansen et al., 1996], which represents uncertain knowl-
edge about the environment given a sequence of open-loop
control actions by the agent. Specifically, memory states cap-
ture the last fully observed state in the base SSP that the agent
was in and the control actions it took since then, which is all
the relevant information needed to infer the state of the world
in a Markovian environment. Translating a memory state to a
belief state (i.e., distribution of possible world states) can be
done using Bayesian updating as in POMDPs [Shani et al.,
2013]. In fact, the translation can be viewed as a special case
of a POMDP where each observation is a null observation.

Definition 1. LetM = 〈S,A, T,C, s0, sg〉 be an SSP. Let F
be the forest created as follows. Set each unique state s ∈ S
to be the root of a unique tree and let each branch corre-
sponds to an action a ∈ A. A memory state is any connected
path in F .

Note that if we bound the maximal depth of a tree in F
by some finite constant value δ ∈ N, we will ensure that the
number of memory states is finite. In order to enable this
bound, we will assume that the agent has access to a sensing
action called Query that fully reveals the agent’s current state,
and require that the only action allowed in a leaf node in F
is Query. For notational convenience, we will henceforth use

the notation Fδ(S,A) to refer to the set of memory states for
the state and action sets S and A with finite depth δ.

Given the definition of a memory state, and the action
Query, we can define an augmented SSP that enables mixed
open-loop/closed-loop planning.
Definition 2. Given the SSP M = 〈S,A, T,C, s0, sg〉,
we define the augmented memory SSP, Mδ =
〈S,A, T , C, s0, sg〉 as follows:

• S = S ∪ Fδ(S,A),

• A = A ∪ {Query},
• T : S ×A× S → [0, 1],

• C : S ×A→ R,
• s0 and sg are unchanged.
Just as in a POMDP we can compute a belief state based on

the agent’s action and observation history. We can define the
transition function in a recursive fashion to compute the tran-
sition probability of a successor state given a memory state
and action:

T (sa1..am, a, s
′) =

∑
s′′

T (sa1..am−1, am, s
′′)T (s′′, a, s′)

except when m = δ in which case

T (sa1..am, a, s
′) =

{
0 if a 6= Query
T (sa1..am−1, am, s

′) if a = Query

If s ∈ S is not a memory state, then we simply define:

T (s, a, s′) = T (s, a, s′)

Similarly, the cost function for a memory state is defined re-
cursively as follows:

C(sa1..am, a) =
∑
s′′

T (sa1..am−1, am, s
′′)C(s′′, a)

and in the case where s ∈ S is not a memory state:

C(s, a) = C(s, a)

4 Modeling Inconsistent Sensory Feedback
As stated earlier, the objective of this paper is to introduce a
planning model that better addresses situations when sensory
feedback is either costly, unavailable, or unreliable, as dis-
cussed in Section 1. In this section we focus on the problem
of unreliability, but we note that our approach easily captures
each case; we discuss how later in the Discussion.

Before formalizing the model, we need to consider three
important factors: (1) how we define reliability, (2) how we
determine reliability, and (3) how we handle a lack of relia-
bility.

Intuitively, reliability in the context of perception should
be a measure of how well the state produced by perception
represents the agent’s true state. Of course, such knowledge
implies that the true state is known which obviates the very
problem we are looking to address. Instead, we argue that
reliability should be a measure of how much the state pro-
duced by perception should be trusted. It is worth clarifying



that this is a distinct notion from standard machine learning
evaluations such as accuracy, precision, or recall which have
well-defined semantics; however we remark that reliability
itself may be conditioned (either explicitly or implicitly) on
such information, if known, about the perception system.

In the simplest case reliability may be a binary variable
that simply indicates if the current state information can be
trusted or not; indeed, this is the case that is assumed for the
remainder of this paper. However, in general, reliability may
be more complex, for instance [0, 1]|F | where F is the set of
state features, representing a continuous reliability score on
each state feature. We will refer to this space generally asR.

Second, to determine reliability, we rely on methods from
introspective perception [Rabiee and Biswas, 2019]. It is suf-
ficient for our purposes to assume the existence of a (trained)
introspective perception function I that will produce a reli-
ability value r ∈ R at each timestep based on sensor feed-
back. We emphasize that reliability information is provided
by I during online operation, and that interaction with I is
not directly included in the offline planning model. However,
as discussed below, a model of expected reliability can be
incorporated into the planning model based on either expert
knowledge or as a learned estimator of feedback from I.

Finally, we assume the existence of a supervisory sensor
that can be queried at high cost by the system to fully observe
the agent’s true state and is known to be perfectly reliable.

Given these three components, we can define a new SSP
that is augmented with known information of perception un-
reliability.
Definition 3. Formally, let M = 〈S,A, T,C, s0, sg〉 be a
ground SSP. We represent a perception sensitive SSP, M̃, by
the tuple 〈S̃, Ã, T̃ , C̃, s0, sg〉 where:

• S̃ = S×R is the set of states where S is the set of ground
states andR is the set/space of reliability values.

• Ã = A∪{Query} is the set of actions whereA is the set
of ground actions and Query is an action that queries a
supervisory sensor,

• T̃ : S̃ × Ã× S̃ → [0, 1] is the transition function, and

• C̃ : S̃ × Ã→ R is the cost function.
We introduce the function η : S × A → ∆|R|, called the

reliability profile, which returns the probabilities over relia-
bility values in the successor state given that the agent took
action a ∈ A in state s ∈ S. For instance, when reliabil-
ity is a binary value, η returns the 1-step likelihood of per-
ception failing (i.e. entering an unreliable state in the next
timestep). In practice, η may be a learned estimator based on
feedback from the introspective perception system I. In this
work, we assume that η is known a priori. In either case, η
is defined over planning-level states, abstracting knowledge
about sensor-level reliability to the state space of the SSP.

When R = {r,¬r} denotes a binary valuation of reliabil-
ity, the transition function would be the following:

T̃ ((s, r), a, (s′, r)) = T (s, a, s′)(1− η(s, a))

T̃ ((s, r), a, (s′,¬r)) = T (s, a, s′)η(s, a)

T̃ ((s,¬r), a, (s′, ·)) = T̃¬r((s,¬r), a, (s′, ·))

Here, and throughout the rest of the paper when R is a bi-
nary set of values, for convenience of notation, we use η(s, a)
to represent the probability of entering an unreliable state in
the next timestep given that the agent took action a ∈ A in
state s ∈ S. In other words, whenR is binary we can express
η as a function from S×A to [0, 1], indicating the probability
of unreliability in the next timestep.

We note that we have explicitly not defined the function
T̃¬r that represents the transition dynamics in an unreliable
state, in the above transition function. This is because by
virtue of the agent being in an unreliable state, the agent does
not know its true state and hence there is not an obvious well-
defined model of the transition function for these states, short
of learning one as is done by Lee et al. [2020]. The naive
approach to handling this problem is to require that the agent
query the supervisory sensor as soon as it enters a state of un-
reliable perception. We take a different approach that lever-
ages memory states and mixed open-loop / closed-loop plan-
ning, as discussed in the next section.

5 Knowing When to Act Blind
In this section, we introduce an approach which improves on
the naive solution discussed above. The approach uses mem-
ory states and mixed open-loop/closed-loop planning to avoid
the need to query the supervisory sensor each time an unre-
liable state is encountered. Our approach relies on mapping
a perception sensitive SSP which augments the base domain
with perception reliability information, to a separate memory
SSP. This mixed control provides the agent a recourse for act-
ing that is more cost effective than immediately querying the
expensive supervisory sensor, while still leveraging this abil-
ity in cost-critical situations.

The following observation is the crux of our approach:
there is an injective mapping from unreliable states in S ×R
to memory states in F(S,A) whenR is binary. The mapping
is as follows: upon arriving in an unreliable state, the agent
deterministically transitions to a memory state sa where s is
the last reliable state the agent was in and a is the action the
agent just performed. The agent can then continue to operate
in open-loop control without querying the supervisory sensor
as this mapping gives us a well defined transition function
for the state that the agent is in. We can bound the depth of
each memory state tree by bounding the number of actions
that the agent can take in open-loop control before querying
the supervisory sensor to ensure a finite state space.

However, this model shift introduces a particular complex-
ity. Namely, when operating in open-loop control, it is en-
tirely possible that perception unreliability may resolve itself
(or be resolved through the actions that were performed in
open-loop). As an example, the agent may enter a part of a
hallway with glare from the window causing I to judge per-
ception as unreliable. The agent may elect to move forward
several meters in open-loop control instead of querying its
supervisory sensor as there is low likelihood of a problem oc-
curring. After doing so, it may pass the problematic area and
perception may once again be judged reliable, providing full
state observability to the agent.

To account for this, we need to update our reliability pro-



file, η, to a new function η : S × A → ∆|R|. We note that,
for any s ∈ S, and any a ∈ A, η(s, a) = η(s, a), η simply
models the fact that the system can not only fall out of reli-
able perception, but can actually fall back into reliable per-
ception without querying the supervisory sensor. However,
for any memory state, the function η will have to be learned
or approximated as the agent does not necessarily have any
way of knowing what state it was in when its reliability sta-
tus changed (several possible states that it could have been in
may, under the same action, lead with nonzero probability the
state that it arrives in). Note that we continue the notational
convention introduced in Section 4 regarding the representa-
tion of η whenR is binary for η as well.

An important observation to make is that when there is
no probability of perception being unreliable, given that the
agent starts in a reliable state, the agent will achieve its best
performance in expectation. Or, in other words, perception
unreliability can only diminish the agent’s expected perfor-
mance. We formalize this below.

Proposition 1. LetM = 〈S,A, T,C, s0, sg〉 be an SSP, and
letMδ be the corresponding memory SSP with depth δ. The
optimal value function forMδ defined as

V
∗
(s) = C(s, π∗(s)) +

∑
s′∈S

T (s, π∗(s), s′)V
∗
(s′)

is minimized when η[S ×A] = {0}, given that s0, sg ∈ S.

To prove this, we first need to show that when the action
Query has zero cost in memory states (i.e. it is a “free”
action) the q-value of Query will be no higher than the q-
value of any other available action. Intuitively, this means
that Query can be assumed to be taken immediately upon
entering a memory-state or, equivalently, immediately upon
entering an unreliable state. Formally:

Lemma 1. LetM be a memory SSP where

C(s, Query) =

{
0 if s ∈ Fδ(S,A)

∞ otherwise

Then, given a policy π, qπ(s, a) ≥ qπ(s, Query) for any a 6=
Query when s ∈ Fδ(S,A), where qπ(s, a) denotes the q-
value for taking action a in state s and following the policy π
in all future states.

Proof. Let s = sa1 · · · ak ∈ S be a memory state. Then
q(s, a)− q(s, Query)

= C(s, a) +
∑
s′∈S

T (s, a, s′)V π(s′)

−
[
C(s, Query) +

∑
s′∈S

T (s, Query, s′)V π(s′)
]

= C(s, a)+
∑
s′∈S

∑
s′∈S

T (sa1 · · · ak−1, ak, s
′)T (s′, a, s′)V π(s′)

−
∑
s′∈S

T (sa1 · · · ak−1, ak, s
′)V π(s′)

=
∑
s′∈S

T (sa1 · · · ak−1, ak, s
′)C(s′, a)+

∑
s′∈S

T (sa1 · · · ak−1, ak, s
′)
[

∑
s′∈S

T (s′, a, s′)V π(s′)− V π(s′)
]

=
∑
s′∈S

T (sa1 · · · ak−1, ak, s
′)
[

C(s′, a) + qπ(s′, a)− C(s′, a)− V π(s′)
]

=
∑
s′∈S

T (sa1 · · · ak−1, ak, s
′)
[

qπ(s′, a)−mina′∈Aq
π(s′, a′)

]
≥ 0

Given Lemma 1 we now have what we need to prove Propo-
sition 1.

Proof Sketch. It is straightforward to see that the behavior of
the agent (e.g. its action trace) when η[S ×A] = {0} will be
the same as when η[S ×A] ⊂ [0, 1] and

C(s, Query) =

{
0 if s ∈ Fδ(S,A)

∞ otherwise

up to the execution of the action Query. Upon entering a
memory state, s, by Lemma 1, Query will have the lowest
q-value, and hence the agent will always immediately query
the supervisory sensor to observe its state before acting in
any optimal policy, which can be viewed as an addition to
the original action. This is the same as not ever needing to
query as the cost of the action is 0 in a memory state and
there is no discounting. Hence, any positive adjustment to
the cost of Query will increase the expected cumulative cost
of a memory state, leading to the same or greater value for
every state in the domain under the optimal policy. Hence,
if η[S × A] ⊂ [0, 1] and C(s, Query) > 0, V

∗
(s) will be at

least as large as when η[S ×A] = {0}.

6 Efficient Planning
The main difficulty faced when planning on memory states
is the explosion in the size of the state space which is com-
binatorial in the number of actions and the maximal depth δ.
Hansen et al. [1996] handle this issue in the context of Q-
learning by pruning branches in F(s, a) during exploration
where the value of information in that memory state is greater
than or equal to its cost.

In our case, as we are performing optimal model based
planning, we employ an optimal search-based planning algo-
rithm, LAO∗ [Hansen and Zilberstein, 2001], using a heuris-
tic in place of the above pruning rule to guide search. LAO∗

is known to be converge to an optimal policy given an admis-
sible heuristic. Our heuristic is based on the optimal value
function of the base SSP; in particular, we observe that plan-
ning in the base domain will exhibit the same behavior as



planning in the memory domain where sensing never fails
and has no cost. In other words, it is an ‘ideal’ instance of
the problem, and therefore solving it provides a (fairly tight)
lower bound on the value of any state in the memory state
version of the problem, giving us our heuristic. We formally
define it below.
Definition 4. Let M = 〈S,A, T,C, s0, sg〉 be an SSP, and
letMδ be the corresponding memory SSP for the perception
sensitive extension ofM, M̃, given some δ ∈ N. Given the
optimal value function for M, V ∗ : S → R, we define the
heuristic function hV ∗ : S → R, as follows:

hV ∗(s) =

{
V ∗(s) if s ∈ S∑
s′ T (sa1..am−1, am, s

′)V ∗(s′) otherwise

Theorem 1. hV ∗ : S → R is an admissible heuristic forMδ

where δ ≥ 1.

Proof. ConsiderMδ for any positive integer δ. First, observe
that if η[S×A] = {0}, under any well-defined policy forMδ

the set of reachable states is exactly S. Hence,Mδ with such
an η is equivalent in behavior to that of M since the action
Query will never be taken by an optimal policy, and hence
will emit the same behavior meaning that V ∗(s) = V

∗
(s)

for all s ∈ S. Furthermore, by Proposition 1, we know that
V
∗
(s) is minimized when η[S × A] = {0}, which implies

that V ∗(s) is a minimal bound on the value function for every
state s ∈ S inM.

For any s ∈ Fδ(S,A),

V
∗
(s) = C(s, π∗(s)) +

∑
s′∈S

T (s, π∗(s), s′)V
∗
(s′)

≥ mins′∈S|T (s,π∗(s),s′)>0V
∗
(s′)

≥ mins′∈S|T (s,π∗(s),s′)>0V
∗
(s′)

≥ mins′∈S|T (s,π∗(s),s′)>0V
∗(s′)

by Lemma 1 and the above logic.

We can also show that given two memory SSPs of the same
domain but with different maximal tree depth δ, the one with
the greater depth will emit an optimal policy, and hence opti-
mal value function, that is at least as good as that of the other.
In other words, increasing the maximum allowed duration of
open-loop control can never increase expected cost.
Proposition 2. Let V ∗δ : S ∪ Fδ(S,A) → R be the optimal
value function for Mδ . For any δ′ > δ, and any s ∈ S ∪
(Fδ(S,A) ∩ Fδ′(S,A)), V ∗δ′(s) ≤ V ∗δ (s).

Proof. First, let π∗δ be an optimal policy for Mδ . Observe
that Fδ(S,A) ⊂ Fδ′(S,A), and as such, it is clearly the case
that we can construct a policy πδ′ for Mδ′ where for every
s ∈ S∪Fδ(S,A), πδ′(s) = π∗δ (s). Furthermore, observe that
under this policy, no memory state s ∈ Fδ′(S,A)\Fδ(S,A)
is reachable, as by definition, for any memory state s ∈
Fδ(S,A) of depth δ, π∗δ (s) = Query, and by construc-
tion πδ′(s) = Query. Hence, the only reachable states in
Mδ′ under πδ′ (memory or otherwise) are fully contained in

Figure 1: An illustration of the simulated domain used in our exper-
iments. The agent, represented by the Jackal image, must navigate
from where it is to the goal state, represented by the green ‘G’ while
managing obstacles, perception failures, and its supervisory sensor.
The Jackal, doors, and crosswalks are not drawn to scale.

the state space of Mδ , so V πδ′ (s) = V ∗δ (s) for every state
s ∈ S. Hence V ∗δ′(s) ≤ V πδ′ (s) = V ∗δ (s) for every state
s ∈ S ∪ (Fδ(S,A) ∩ Fδ′(S,A)).

7 Empirical Evaluations
We test our approach in a simulated robotic domain where the
objective is for a robot to deliver a package from one office in
a campus environment to another office in a different building
on the same campus. In order to reach its destination, the
robotic agent needs to navigate through the world while also
successfully interacting with both building doors and traffic-
ridden crosswalks.

An illustrated example of the domain can be seen in Fig-
ure 1. Each grid cell represents a unique location in the
world which corresponds to some state or states in the do-
main model. There are two sources of stochasticity in the
domain. When moving, there is a probability that the robot
gets stuck and does not move. When waiting at a crosswalk,
the traffic conditions stochastically change at each timestep.

In addition to navigating through the domain as described,
the robot is faced with limitations on its regular sensory feed-
back. In particular, at all times there is a small (0.1) likelihood
of perception failing, and in certain parts of the domain (de-
noted in shaded red) there is a higher (up to 0.9) likelihood of
perception failing due to environmental factors.

If the agent tries to move into a wall or door, it suffers
high cost, and if it attempts to cross the road when there is
oncoming traffic, there is a chance of getting hit resulting in
extremely high cost. Hence, the agent must proactively plan
to operate in open-loop control when there is low likelihood
of unreliability, while either avoiding areas of high likelihood
of perception unreliability or querying its supervisory sensor
at the appropriate time to avoid these failure cases.

To solve for the agent’s policy, we employ the algorithm
LAO∗. We compare the efficiency of LAO∗ when using two
different admissible heuristics: the null heuristic (which is al-
ways admissible), and the heuristic defined in Definition 4,
hV ∗ . As both heuristics lead to optimal policies, we use the



Figure 2: The true incurred cost (mean and std) for base do-
main (OPT), base domain with required and unexpected sensing
(NAIVE), and the optimal policy for the memory SSP with delta
= 1, 2, 3

policy derived from the the hV ∗ heuristic without loss of gen-
erality in our plots.

To evaluate our approach, we compare the optimal perfor-
mance in the following scenarios. First, as a baseline, the
base model M where there is no probability of unreliable
perception (OPT). Second, we introduce unreliable percep-
tion, but the agent always follows the optimal policy on M
and immediately takes the action Query in a memory state;
this simulates the situation where the agent does not proac-
tively account for perception unreliability in its model and its
only recourse is to query its supervisory sensor (NAIVE). The
remaining three scenarios are when the agent uses the optimal
policy for the memory SSP with δ = 1, 2, and 3.

Figure 2 illustrates that our approach can lead to a decrease
in average cost incurred by the agent in performing its task,
and in particular is closest to the cost when perception is never
unreliable (OPT). Notably, the biggest gain comes from the
basic inclusion of perception reliability knowledge into the
planning model, which enables the agent to proactively plan
to avoid parts of the domain where η is high. Simply adding
memory states of depth 1, which increases the state space by
only a factor of |A| � |S|, leads to a 20.17% decrease in
the average incurred cost for the same task, and a 50% re-
duction in standard deviation, indicating that performance is
significantly more reliable. However, the graph also illus-
trates empirically what was proved in Proposition 2, namely
that increasing δ can improve performance by up to as much
as 4.93% in the domain tested. While the benefit is not as sig-
nificant as the 20% gained above, we expect that the benefit
may be even greater in domains where high cost outcomes are
less likely (e.g. driving in a large open area) than the domain
considered here where the agent operates in a fairly confined
space and runs the risk of crashing if it operates in open-loop
control for too long.

Table 1 shows that LAO∗ with our heuristic converges up
to 5 times faster than with the null heuristic, and expands
roughly half the number of nodes. In the case of δ = 3,
LAO∗ fails to converge within 12 hours at which point it was
terminated.

δ |S| Heuristic Time (s) Nodes Expanded

1 3048 h0 268.32 1025
hV ∗ 49.97 561

2 21717 h0 2277.98 5223
hV ∗ 675.319 2573

3 152400 h0 — —
hV ∗ 22486.81 13998

Table 1: Efficiency Comparison of LAO∗ with the null heuristic
and the hV ∗ heuristic introduced in this paper for three different
maximum depths of memory states.

8 Discussion
Robust and reliable planning in the open world is an impor-
tant area of work in AI and robotics, which involves many
challenges. In this paper, we focused on the problem of in-
consistent sensory feedback that can take the form of costly
sensing, unavailable sensing, and unreliable perception, with
an emphasis on the third problem which we consider the most
difficult to plan around.

To address this problem, we proposed an augmentation of
a standard stochastic shortest path problem that is sensitive
to unreliable perception by including a measure of reliabil-
ity in the state representation. To enable this, we assumed
that the agent has access to both an introspective perception
system which notifies the agent when perception is unreli-
able, and a costly supervisory sensor that can fully reveal the
state to the agent whenever it is queried. We showed that
we can in fact do better than naively querying the supervi-
sory sensor immediately upon reaching an unreliable state by
mapping the planning model augmented with perception re-
liability information, called a perception sensitive SSP to an-
other extended stochastic shortest path model called a mem-
ory SSP that allows the agent to plan for and perform mixed
open-loop/closed-loop control. This mixed control enables
the agent a recourse for acting that is more cost effective
than immediately querying the expensive supervisory sensor,
while still leveraging this ability in cost-critical situations.

It is straightforward to see that our approach also handles
problems where standard sensing is always available and re-
liable, but has non-negligible cost, as considered by Hansen
et al. [1996], or when base sensing is always free and reli-
able but not always available. To model the former, we can
set the reliability profile η so that the model deterministically
transitions to an unreliable state when the action Query is not
taken; in this case, querying is equivalent to the standard sens-
ing action considered by Hansen et al. [1996]. To address the
latter, we can simply re-frame the boolean reliability indica-
tor as availability and use the model as described, where η is
simply a predictor of unavailable sensing instead.

We provided several theoretical results about our approach
including an admissible heuristic which, we showed, speeds
up the runtime of the planning algorithm by as much as
5 times. Additionally, we empirically demonstrated the
value gained by including memory states and mixed open-
loop/closed-loop control, showing that it decreased average
incurred cost by up to 20%, and that increasing the length of



open-loop control action sequences leads to improved perfor-
mance (up to 5%).

There are several important avenues for future work. Most
notably, it would be beneficial to develop faster solution tech-
niques, as the main bottleneck of this approach is a combi-
natorial increase in the size of the state space. Methods for
reducing the number of states considered via pruning mech-
anisms, planning on macro actions, and alternative planning
algorithms such as short-sighted approaches or Monte Carlo
tree search may be the key to improving the efficiency of solv-
ing these problems. Additionally, we would like to further in-
vestigate the notion of unreliability in perception; while this
paper focuses solely on the case where reliability is an all-or-
nothing concept, in practice it may instead be binary for each
state feature, or, in the most general case, some real number
for each state feature that indicates how reliable that feature
is. Finally, we would like to deploy this on a real mobile
robot to demonstrate that this approach is feasible in a real
open-world setting.
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