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ABSTRACT
Interest in semi-autonomous systems (SAS) is growing rapidly as a

paradigm to deploy autonomous systems in domains that require

occasional reliance on humans. This paradigm allows service robots

or autonomous vehicles to operate at varying levels of autonomy

and offer safety in situations that require human judgment. We

propose an introspective model of autonomy that is learned and

updated online through experience and dictates the extent to which

the agent can act autonomously in any given situation. We define

a competence-aware system (CAS) that explicitly models its own

proficiency at different levels of autonomy and the available human

feedback. A CAS learns to adjust its level of autonomy based on

experience to maximize overall efficiency, factoring in the cost of

human assistance. We analyze the convergence properties of CAS

and provide experimental results for robot delivery and autonomous

driving domains that demonstrate the benefits of the approach.
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1 INTRODUCTION
Recent progress in artificial intelligence and robotics has enabled

the deployment of increasingly autonomous systems in complex un-

structured domains such as space exploration [9, 17], autonomous

underwater vehicles [4, 11, 21], service robots [10, 12], and, most

notably, autonomous vehicles [2, 3, 7]. Common to these settings is

that the autonomous systems are required to operate without super-

vision over extended periods of time while they rely on approximate

models of the environment that may not be sufficient for handling

every situation [19]. Consequently, autonomous systems need to

rely on various forms of human supervision and assistance [6, 31].

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.),
, May 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

The vast majority of autonomous systems under development

are in fact semi-autonomous systems (SAS) that can operate au-

tonomously under certain conditions, but may require human in-

tervention or aid in order to achieve their assigned goals [31]. For

example, a space exploration rover may suspend operation and wait

for a new plan from the command center when its wheel encounters

unexpected resistance. An autonomous car may request that the

driver take over when lane demarcation is lost. The reliance on

humans in these situations is indicative of the limited competence

of the autonomous system. Human response could come in different

forms that correspond to different limitations of the autonomous

system. For example, allowing a system to operate autonomously

under human supervision indicates a higher level of competence

relative to a system that must first present its plan and get approval

for every action before the action is executed.

We propose to represent the competence of a semi-autonomous

system using different levels of autonomy, each associated with

distinct forms of human involvement. Intuitively, we expect higher

competence to imply that the necessary human involvement re-

quires less effort or is less costly. The resulting competence-aware

system (CAS) can operate in multiple levels of autonomy, each

of which is associated with different restrictions on autonomous

operation and different forms of human assistance that compensate

for the restricted abilities of the system. We further associate with

each type of human assistance a unique set of feedback signals, the

likelihood of which can be learned over time by the system.

Determining the exact competence of an autonomous system

at design time is very difficult, particularly when the environment

is not fully specified. For example, an autonomous vehicle may

be initially authorized to operate in a fully autonomous mode on

highways only during daytime and clear weather. Hence, an ini-

tial level of competence could be determined during testing and

evaluation, but adjustments must be made when the system is de-

ployed. Even when developers aim to err on the side of caution and

define a lower level of autonomy as the default, it is also possible

to unintentionally infer from initial testing that the system is more

competent than it really is [18, 22]. Therefore, developing mecha-

nisms to explicitly represent, reason about, and adjust the level of

autonomy is an important challenge in artificial intelligence.

Our objective in this paper is three-pronged: (1) to develop a

formal representation of competence using distinct levels of auton-
omy and distinct forms of human assistance, (2) to learn to optimize
autonomy based on human assistive actions, and (3) to develop a

competence-aware planning framework that factors in the system’s

knowledge about its own competence in order to reduce unneces-

sary reliance on humans. Intuitively, the highest level of autonomy



that a system can handle without human overrides captures its

“true competence.” Our goal is to introduce learning mechanisms

that allow the system to converge on its true competence and

thereby minimize its reliance on human assistance. We present a

formal model and algorithms for implementing a CAS, a theoretical

analysis of the model, and experimental results demonstrating the

effectiveness of our approach in simulation as well as integration

with an autonomous vehicle (AV) prototype.

2 RELATEDWORK
There has been substantial work on planning for semi-autonomous

systems over the last two decades, particularly on various forms of

adjustable autonomy. Adjustable autonomy refers to the ability of

an autonomous system to alter its level of autonomy during plan

execution, often by dynamically imposing or relaxing constraints

on the extent of actions it can perform autonomously in a human-

agent team [1, 8, 14–16, 20, 23, 30]. Our work adds two important

capabilities to systems with adjustable autonomy: (1) explicitly

modeling multiple forms of human feedback and the ability to

learn about the agent’s competence from feedback, and (2) learning

predictive models of human feedback to allow the agent to converge

on its level-optimal autonomy over time.

For autonomous vehicles in particular, SAE International has

developed five distinct levels of autonomy that have become an

industry standard [5]. Our AV example uses levels of autonomy

inspired by that standards and our experience with an AV prototype.

The problem of safely transferring control from automation

to a human in semi-autonomous systems [31] has been studied,

particularly in the context of autonomous vehicles [26]. While such

transfer mechanisms are highly relevant to our work, for the sake

of clarity we do not model these transitions explicitly in this paper

and instead focus on competence modeling and identifying the best

level of autonomy in each situation.

Our work relates to broader research on long-term autonomy [27],
particularly symbiotic autonomy [6, 24, 25] and human-in-the-loop
AI systems [29]. Symbiotic autonomy allows collaborative robots

(CoBots) to proactively seek external help to overcome their lim-

itations. This work takes symbiotic autonomy to the next level,

allowing agents to learn a model of their limitations from human

feedback and consider the most cost-effective form of human assis-

tance for each situation based on the acquired models. Similarly,

the issue of authority sharing has been studied in human-robot

systems [13], however in our case we assume that the human is

always the authority, never the autonomous system.

3 PROBLEM FORMULATION
We start with a description of the general problem. Consider an

autonomous agent that can operate in and plan for multiple levels

of autonomous operation, each of which consists of different forms

of human feedback. In particular, this paper focuses on agents that

use the following three models: a domain model (DM) that describes

the environment that the agent is operating in, an autonomy model
(AM) that describes the levels of autonomy the agent can operate

in, where it is allowed to do so, and what the respective utilities

are, and a human feedback model (HM) that describes the types of

feedback that the agent can receive from the human, how costly

each type of feedback is, and how likely the agent is to receive it.

Figure 1 represents an overview of a competence-aware system

with specific levels of autonomy and feedback signals that we use

throughout the rest of the paper as a running example.

3.1 Domain Model
The domain model (DM) describes the environment in which the

agent operates, most notably the transition and cost dynamics of

the environment with respect to the agent. In this paper, we model

this as a Stochastic Shortest Path (SSP) problem, a formal decision-

making model for reasoning in stochastic environments where the

objective is to find the least-cost path from a start state to a goal

state. An SSP is a tuple ⟨𝑆,𝐴,𝑇 ,𝐶, 𝑠0, 𝑠𝑔⟩, where 𝑆 is a finite set of

states,𝐴 is a finite set of actions,𝑇 : 𝑆×𝐴×𝑆 → [0, 1] represents the
probability of reaching state 𝑠 ′ ∈ 𝑆 after performing action 𝑎 ∈ 𝐴 in

state 𝑠 ∈ 𝑆 ,𝐶 : 𝑆 ×𝐴 → R+ represents the expected immediate cost

of performing action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 , 𝑠0 is an initial state, and

𝑠𝑔 is a goal state such that ∀𝑎 ∈ 𝐴,𝑇 (𝑠𝑔 , 𝑎, 𝑠𝑔 ) = 1 ∧𝐶 (𝑠𝑔 , 𝑎) = 0.

A solution to an SSP is a policy 𝜋 : 𝑆 → 𝐴 that indicates that

action 𝜋 (𝑠) ∈ 𝐴 should be taken in state 𝑠 ∈ 𝑆 . A policy 𝜋 induces

the value function 𝑉 𝜋
: 𝑆 → R that represents the expected cumu-

lative cost 𝑉 𝜋 (𝑠) of reaching 𝑠𝑔 from state 𝑠 following the policy

𝜋 . An optimal policy 𝜋∗ minimizes the expected cumulative cost

𝑉 ∗ (𝑠0) from the initial state 𝑠0.

3.2 Autonomy Model
The autonomy model (AM) captures the extent of autonomous op-

eration that the agent can perform, i.e., both the actual different

forms of autonomous operation as well as when each is allowed by

some external constraint. We formally represent this by the tuple

⟨L, 𝜅, 𝜇⟩, where L = {𝑙0, ..., 𝑙𝑛} is the set of levels of autonomy

where each level 𝑙𝑖 corresponds to some set of constraints on the

system’s autonomous operation. The constraints are reflected by

the form of human involvement; for example, in supervised auton-

omy a person must monitor the system and override any actions

deemed unsafe or undesirable. We do not restrict the number of

levels and forms of human involvement allowed in an autonomy

model. Intuitively, the higher the level of autonomy, the lower the

cost of human involvement, although that is not a requirement of

the autonomy model.

Without loss of generality, we assume that L is a fully ordered

set, although in general the theory extends to any graph in which

two levels are connected when the level of autonomy could change

from one to the other. In Figure 1, these levels correspond to no
autonomy, where the agent needs a human to perform the action

manually, verified autonomy, where the agent must query for and re-

ceive explicit approval before even attempting the action, supervised
autonomy, where the agent can perform the action autonomously

as long as there is a human supervising the agent who can inter-

vene if something is going wrong, and unsupervised autonomy, that
represents fully autonomous operation.

Next, 𝜅 : 𝑆 ×𝐴 → P(L) is the autonomy profile mapping states

𝑠 ∈ 𝑆 and actions 𝑎 ∈ 𝐴 to a subset of L (note that P(L) denotes
the powerset of L), prescribing constraints on the allowed levels

of autonomy for any situation. These can be hard constraints on

the system (i.e. technical, legal, or ethical) or can be temporary



conservative constraints that can be updated over time as the system

improves. In Figure 1, 𝜅 constrains the space of all policies Π so that

the system is only allowed to follow a policy that never violates 𝜅.

Finally, 𝜇 : 𝑆 × L ×𝐴 × L → R represents the cost of autonomy of

performing action 𝑎 ∈ 𝐴 at level 𝑙 ′ ∈ L given that the agent is in

state 𝑠 ∈ 𝑆 and just operated in level 𝑙 ∈ L in the previous state.

3.3 Human Feedback Model
The human feedback model (HM) describes the agent’s knowledge

about, and predictions of, its interactions with the human. We for-

mally represent this as the tuple ⟨Σ, 𝜆, 𝜌, 𝜏⟩, where Σ = {𝜎0, ..., 𝜎𝑛}
is the set of possible feedback signals the agent can receive from

the human, 𝜆 : 𝑆 × L ×𝐴 × L → Δ |Σ |
is the feedback profile that

represents the probability of receiving signal 𝜎 when performing

action 𝑎 ∈ 𝐴 at level 𝑙 ′ ∈ L given that the agent is in state 𝑠 ∈ 𝑆

and just operated in level 𝑙 ∈ L, 𝜌 : 𝑆 × L × 𝐴 × L → R+ is the

human cost function and represents the positive cost to the human

of performing action 𝑎 ∈ 𝐴 at level 𝑙 ′ ∈ L given that the agent is in

state 𝑠 ∈ 𝑆 and just operated in level 𝑙 ∈ L, and 𝜏 : 𝑆 ×𝐴 → Δ |𝑆 |
is

the human state transition function that represents the probability

of the human taking the agent to state 𝑠 ′ ∈ 𝑆 when the agent at-

tempted to perform action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆 but the human took

over control.

In practice, the feedback profile 𝜆 and the human state transition

function 𝜏 are assumed to be unknown a priori, so the agent must

estimate them based on previous data it has gathered in the same or

similar situations. In Figure 1, after the action execution stage, the

system will record the feedback it receives from the human, if any,

and use that to update these model components. In practice, the

feedback signals may also not be instantaneous, and in some cases

could require a complex process of transferring control to and from

a human over the course of an indefinite amount of time, where el-

ements of the transfer process such as the communication interface

are individually important. The problem of transfer of control in

semi-autonomous systems has been separately studied [26], how-

ever for the sake of clarity we do not model this process explicitly

in this work as we are focusing on the orthogonal problem of levels

of autonomy and competence modeling.

4 COMPETENCE-AWARE SYSTEMS
Given the three model components above, we can now define a

competence-aware system (CAS) that combines the three models

into one formal decision-making framework. A CAS therefore rep-

resents a planning problem that accounts for the different levels of

autonomy available to the agent and factors the agent’s expecta-

tions regarding the likelihood and cost of human intervention. The

objective of a solution to a CAS planning problem is to create a cost-

effective plan that minimizes the cost of reaching the goal, including

the cost of human assistance. Hence, the CAS uses the autonomy

model to proactively generate plans that operate across multiple

levels of autonomy, by leveraging the human feedback model to

predict the likelihood of different feedback signals to optimize the

level of autonomy and minimize the reliance on humans.

Figure 1: A competence-aware system with four levels
of autonomy—verified, supervised, unsupervised, and no
autonomy—and four type of feedback signals—approval, dis-
approval, override, and no feedback.

4.1 Model Definition
CAS combines the domain model, autonomy model, and human

feedback model into one sequential decision-making framework

where the objective is to generate a policy that minimizes the ex-

pected cost of accomplishing a task. Hence we formally represent

CAS as the following extension of an SSP:

Definition 4.1. A competence-aware system S is represented

by the tuple ⟨𝑆,𝐴,𝑇 ,𝐶, 𝑠0, 𝑠𝑔⟩, where:
• 𝑆 = 𝑆 × L is a set of factored states such that 𝑆 is the set of

domain states and L is the levels of autonomy.

• 𝐴 = 𝐴 × L is a set of factored actions such that 𝐴 is the set

of domain actions and L is the levels of autonomy.

• 𝑇 : 𝑆 ×𝐴 → Δ |𝑆 |
is a transition function comprised of a state

transition function 𝑇𝑙 : 𝑆 ×𝐴 → Δ |𝑆 |
for each level 𝑙 ∈ L.

• 𝐶 : 𝑆 × 𝐴 → R+ is a positive cost function comprised of

𝐶 : 𝑆 ×𝐴 → R+, 𝜇 : 𝑆 ×𝐴 → R, and 𝜌 : 𝑆 ×𝐴 → R+.
• 𝑠0 ∈ 𝑆 is the initial state such that 𝑠0 = ⟨𝑠0, 𝑙⟩ for some 𝑙 ∈ L.

• 𝑠𝑔 ∈ 𝑆 is the goal state such that 𝑠𝑔 = ⟨𝑠𝑔 , 𝑙⟩ for some 𝑙 ∈ L.

A solution to a given CAS is a policy 𝜋 that maps states and

levels 𝑠 ∈ 𝑆 to actions and levels 𝑎 ∈ 𝐴, where the space of policies

that the agent can consider is restricted by the autonomy profile 𝜅

in the following way.

Let 𝑎 = ⟨𝑎, 𝑙⟩. Given 𝑠 = ⟨𝑠, 𝑙 ′⟩ ∈ 𝑆 , we say that (𝑠, 𝑎) is allowed
if 𝑙 ∈ 𝜅 (𝑠, 𝑎), and a policy 𝜋 is allowed if for every 𝑠 ∈ 𝑆 , (𝑠, 𝜋 (𝑠)) is
allowed. We denote the set of policies 𝜋 ∈ Π that are allowed given

𝜅 as Π𝜅 ⊆ Π and require that any policy returned by solving the

CAS, 𝜋∗, is always taken from argmin𝜋 ∈Π𝜅
𝑉 𝜋 (𝑠0).

4.2 Sample CAS
As noted earlier, we focus on the CAS illustrated in Figure 1, which

represents a class of CAS with four distinct levels of autonomy and

four feedback signals. Recent work on autonomous vehicles [28]



and autonomous mobile robots [22] suggests that this class of CAS

represents a wide range of autonomous systems. In Figure 1, the

policy 𝜋 produces an action 𝑎 and a level 𝑙 for every state 𝑠 . 𝑙 dictates

the manner in which the system carries out the action 𝑎, and the

autonomy profile 𝜅 restricts the levels the 𝜋 can return.

Formally, let L = {𝑙0, 𝑙1, 𝑙2, 𝑙3} where
• 𝑙0 is no autonomy, which requires direct human aid in the

form of manual control.

• 𝑙1 is verified autonomy, which requires the agent to query for

and receive human approval prior to executing the action.

• 𝑙2 is supervised autonomy, which requires a human to be

present and available to intervene in the case of failure.

• 𝑙3 is unsupervised autonomy, which involves no human in

the loop at all.

Let Σ = {∅, ⊕, ⊖, ⊘}, corresponding to no feedback, approval, disap-
proval, and override respectively. Furthermore, we assume that ⊕
and ⊖ can only be received in 𝑙1, and ⊘ and ∅ only in 𝑙2.

We can now specify the state transition function of this CAS.

Given 𝑠, 𝑎, and 𝑠 ′, we define 𝑇 as follows:

𝑇 (𝑠, 𝑎, 𝑠 ′) =


𝜏 (𝑠, 𝑎, 𝑠 ′), if 𝑙 = 𝑙0,

𝜆(⊕)𝑇 (𝑠, 𝑎, 𝑠 ′) + 𝜆(⊖)[𝑠 = 𝑠 ′], if 𝑙 = 𝑙1,

𝜆(∅)𝑇 (𝑠, 𝑎, 𝑠 ′) + 𝜆(⊘)𝜏 (𝑠, 𝑎, 𝑠 ′), if 𝑙 = 𝑙2,

𝑇 (𝑠, 𝑎, 𝑠 ′), if 𝑙 = 𝑙3,

(1)

where 𝜆(·) = 𝜆(·|𝑠, 𝑎) and [·] denotes Iverson brackets.

We further define 𝐶 (𝑠, 𝑎) as follows:
𝐶 (𝑠, 𝑎) = 𝑔

(
𝐶 (𝑠, 𝑎), 𝜇 (𝑠, 𝑎), 𝜌 (𝑠, 𝑎)

)
. (2)

where𝑔 is any cost aggregation function on𝐶, 𝜇, and 𝜌 , the simplest

case of which is a weighted summation of the three values.

Intuitively, Eqn. 1 states that when the agent operates in 𝑙0, it

follows the transition dynamics of the human who takes control.

When operating in 𝑙1, the probability it arrives in state 𝑠 ′ is the
probability it is approved to take the action times the probability

that it succeeds following 𝑇 plus the probability that it is disap-

proved and the state is the same. In 𝑙2, the probability it arrives

in state 𝑠 ′ is the probability it succeeds following 𝑇 without any

human intervention plus the probability that the human overrides

it and takes it to that state. When the agent operates in 𝑙3, it follows

the transition dynamics of the domain model DM.

4.3 Gated Exploration
A fundamental component of the CAS model is the ability to adjust

its autonomy profile over time using what the system has learned,

and to optimize its autonomy by reducing unnecessary reliance

on human assistance. However, before operating in a new level of

autonomy, the system may have no knowledge of how the human

will interact with it in that level, i.e., the feedback profile in that new

level may be initialized by default to some baseline distribution. As

a result, it is necessary that the system explore levels of autonomy

that it has reason to believe may be more cost effective than its

current level, so that it may generate the data it needs to improve

the accuracy and confidence of its feedback profile in those levels.

However, allowing a system to alter its own autonomy profile

can lead to severe consequences in the real world if not done care-

fully. Therefore, we propose an extension to traditional exploration

methods used in reinforcement learning called gated exploration,

in which the system must obtain permission from a human before

exploring a new (disallowed) level of autonomy. Hence, the system

must first query the human to update the autonomy profile to allow

such exploration. This way, the exploration of disallowed levels is

gated by a human authority to prevent the agent from randomly

executing dangerous actions.

Although many exploration-exploitation strategies may work in

our context, we use a variant of 𝜖-greedy where 𝜖 is not fixed but

instead proportional to the relative expected cost of performing a

given action in each level of autonomy. More formally, the proba-

bility of exploring a level 𝑙 ′ adjacent to the current level 𝑙 in L is

proportional to the softmax of the negative 𝑞-value of operating in

level 𝑙 ′ over all levels adjacent to 𝑙 .

4.4 Autonomy Profile Initialization
Because we restrict the system to choose policies from Π𝜅 , if the

autonomy profile 𝜅 is altered, so too is the space of allowed policies;

in particular this means that the optimal policy is, intuitively, only

as good as 𝜅. Hence there is a trade-off when setting the initial

constraints on the allowed autonomy of the system, i.e., 𝜅.

One can take a conservative approach and constrain the system

significantly, for instance setting |𝜅 (𝑠, 𝑎) | = 1 so that a single level

is deterministically selected for every (𝑠, 𝑎) ∈ 𝑆 × 𝐴, reducing

the problem complexity to solving the underlying domain model.

However, doing so risks a globally suboptimal policy with respect to

L and may, depending on the initial 𝜅 , make reaching the globally

optimal policy impossible. On the other extreme, one can take a

risky approach and not constrain the system at all a priori, leaving

the decision of choosing the level of autonomy completely up to the

system. This approach, while necessarily containing the optimal

policy (subject to the agent’s model) is naturally slower due to the

larger policy space and inherently less safe as the agent can take

actions in undesirable levels.

We propose that in practice, the ideal initialization is somewhere

in the middle; 𝜅 should be less constraining in situations where

the expected cost of failure is relatively low, and more constrain-

ing in situations where it is high. For instance, in an autonomous

vehicle, 𝜅 should be more constraining initially in situations involv-

ing pedestrians, poor visibility, or chaotic environments such as

large intersections with multiple vehicles; however, initial testing

may indicate that driving along a highway is low-risk and may not

require a highly constraining 𝜅.

5 THEORETICAL ANALYSIS
In this section we first state several key properties of a CAS and

prove the following claims:

First, we show that under standard convergence assumptions,

the feedback profile 𝜆 will converge to the human’s true feedback

distribution. Second, we show that if feasible, the agent’s policy 𝜋

will converge to its competence regardless of how 𝜆 is initialized,

given a reasonable initialization of 𝜅.

5.1 Properties of a CAS
We will refer to the human authority henceforth by the notation

H , and we make the following assumptions about them. First, we

assume that the human authority is 𝜖-consistent, which means that



given two identical queries, the probability that they respond dif-

ferently given no new information is bounded by some 0 < 𝜖 ≪ 1.

Second, we begin by assuming that the human authority’s feedback

signals come from an underlying stationary distribution, 𝜆H , which

may not be known even by H a priori, and is hence Markovian.

We now define three central properties of a CAS.

Definition 5.1. Let 𝜆H be the stationary distribution of feedback

signals that the human authority follows.

Definition 5.2. Let 𝜅H : 𝑆 ×𝐴 → P(L) be a mapping that maps

state-action pairs to the set of levels of autonomy the human au-

thority will allow the system to operate in with nonzero probability.

Intuitively, 𝜅H represents the human authority’s belief of the

agent’s underlying competence. Hence by definition, any level that

is not contained in 𝜅H (𝑠, 𝑎) will never be approved by the human.

Definition 5.3. Let S be a CAS. The competence of S, denoted
𝜒S , is a mapping from 𝑆 × 𝐴 to the optimal (least-cost) level of

autonomy given perfect knowledge of 𝜆H . Formally:

𝜒S (𝑠, 𝑎) = argmin

𝑙 ∈𝐿
𝑞(𝑠, (𝑎, 𝑙); 𝜆H) . (3)

Intuitively, the system’s level of competence for executing action

𝑎 in state 𝑠 is the most beneficial (cost effective) level of autonomy

were it to know exactly the human feedback model. In general,

we expect this to be equal to 𝑠𝑢𝑝 (𝜅H (𝑠, 𝑎)), i.e., the highest level
of autonomy allowed by the human, although it need not be the

case always. In principle, the highest allowed level of autonomy

could require more frequent human interventions that may ren-

der it less efficient overall relative to a lower level of autonomy.

That is why we define the optimal level of autonomy based on the

comprehensive expected cost.

It is important to note that this definition of competence relies on

𝜆H , and hence is a definition of competence on the overall human-
agent system, and is explicitly not a measure of the competence of

the underlying agent’s fundamental abilities. A corollary of this

fact is that the CAS is only as competent as the human authority

believes it to be; a human authority that has a poor understanding

of the system’s abilities could lead to the system having a lower

competence than a human authority that knows perfectly the limi-

tations and capabilities of the system.

We now define two final properties of a CAS.

Definition 5.4. Let S be a CAS. S is 𝜆-stationary if for every

state 𝑠 = (𝑠, 𝑙) ∈ 𝑆 , and every action 𝑎 ∈ 𝐴, the expected value of

sample information (EVSI) on the feedback signals Σ for (𝑠, 𝑎) is
less than 𝜖 for any 𝜖 greater than 0.

Intuitively, S is 𝜆-stationary if, in expectation, any new feedback

drawn from the true distribution 𝜆H will not affect 𝜆 enough to

change the optimal level of autonomy for any 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴.

Definition 5.5. Let S be a CAS. S is level-optimal if for every
state 𝑠 = (𝑠, 𝑙) ∈ 𝑆 , we have that 𝜋∗ (𝑠) = 𝑎 = (𝑎, 𝜒S (𝑠, 𝑎)). Similarly,

S is 𝜖-level-optimal if this holds for 1 − 𝜖 percent of states.

5.2 Theoretical Results
In this section, we show that under assumptions 1 and 2 as stated

in Section 5.1, if 𝜒S (𝑠, 𝑎) ∈ 𝜅H (𝑠, 𝑎) and there is a path from some

level of autonomy in the system’s initial𝜅 (𝑠, 𝑎) to 𝜒S (𝑠, 𝑎) for every
𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴, then the system’s autonomy profile 𝜅 will converge to

its competence regardless of the initialization of 𝜆.

Proposition 5.6. Let 𝜆𝑡 be the feedback profile after 𝑡 pieces of
feedback have been received. As 𝑡 → ∞, if no (𝑠, 𝑎) is starved and
{𝜆𝑡 } converges in distribution, the autonomy-cognizant system will
converge to 𝜆-stationarity.

Proof. Let 𝑠 ∈ 𝑆 and 𝑎 ∈ 𝐴. As 𝑠 and 𝑎 are arbitrary and we

assume that no (𝑠, 𝑎) is starved, it is sufficient to show that (𝑠, 𝑎)
converges to stationarity as 𝑡 → ∞. First, let 𝑈 (𝜆, 𝑙) be the q-value
of (𝑠, 𝑎) under the optimal policy given that our feedback profile is

𝜆 and we execute 𝑎 in level 𝑙 . Then

EVSI=
∑
𝜎 ∈Σ

max

𝑙 ∈𝐿

∫
Λ
𝑈 (𝜆, 𝑙)𝜆(𝜎 |𝑠, 𝑎, 𝑙)𝑝 (𝜆)𝑑𝜆 −max

𝑙 ∈𝐿

∫
Λ
𝑈 (𝜆, 𝑙)𝑝 (𝜆)𝑑𝜆.

Because {𝜆𝑡 } converges in distribution, lim𝑡→∞ 𝑃𝑟 ( |𝜆𝑡 − 𝜆H | >
𝜖) = 0 ∀𝜖 > 0 where 𝜆H is the true distribution. Therefore, in the

limit the probability that 𝜆 = 𝜆H after 𝑡 steps, 𝑝𝑡 (𝜆), defines a Dirac
delta function with point mass centered at 𝜆H . Hence we get that,

lim

𝑡→∞
EVSI

=
(
lim

𝑡→∞

∑
𝜎 ∈Σ

max

𝑙 ∈𝐿

∫
Λ
𝑈 (𝜆, 𝑙)𝜆(𝜎 |𝑠, ∅, 𝑎, 𝑙)𝑝𝑡 (𝜆)𝑑𝜆

)
−
(
lim

𝑡→∞
max

𝑙 ∈𝐿

∫
Λ
𝑈 (𝜆, 𝑙)𝑝𝑡 (𝜆)𝑑𝜆

)
=
( ∑
𝜎 ∈𝜎

max

𝑙 ∈𝐿
𝑈 (𝜆H, 𝑙)𝜆H (𝜎 |𝑠, ∅, 𝑎, 𝑙)

)
−
(
max

𝑙 ∈𝐿
𝑈 (𝜆H, 𝑙)

)
=
∑
𝜎 ∈Σ

max

𝑙 ∈𝐿
𝑈 (𝜆H, 𝑙) (1 − 𝜆H (𝜎 |𝑠, ∅, 𝑎, 𝑙))

= max

𝑙 ∈𝐿
𝑈 (𝜆H, 𝑙)

(
1 −

∑
𝜎 ∈Σ

𝜆H (𝜎 |𝑠, ∅, 𝑎, 𝑙)
)

= max

𝑙 ∈𝐿
𝑈 (𝜆H, 𝑙) (1 − 1)

= 0. □

Theorem 5.7. Let S be a CAS that follows the gated exploration
strategy for which there exists at least one path from 𝜅0 (𝑠, 𝑎) to
𝜒S (𝑠, 𝑎) in L where all levels along the path are in 𝜅H (𝑠, 𝑎) for
every (𝑠, 𝑎) ∈ 𝑆 ×𝐴. Then given any initial 𝜆0, if no (𝑠, 𝑎) is starved
and {𝜆𝑡 } converges in distribution, then as 𝑡 → ∞, S will converge
to level-optimality.

Proof Sketch. By proposition 5.6, under the conditions as stated,

𝜆 will converge to 𝜆H . As a result, what is left is to show that in

the limit, 𝜋∗ (𝑠) = (𝑎, 𝜅 (𝑠, 𝑎)) for every 𝑠 ∈ 𝑆 . Because 𝜆 has con-

verged to 𝜆𝐻 , the system can determine the cost-optimal level of

autonomy for every action 𝑎 in any state 𝑠 ; this is exactly 𝜒S (𝑠, 𝑎).
Hence, we must only show that the system will reach this level

under the conditions stated. By the exploration policy, the system

has a nonzero chance of exploring all neighboring levels at any

given point in time, and since L is assumed to have a valid path

from 𝜅0 (𝑠, 𝑎) to 𝜒S(𝑠, 𝑎), there is always a nonzero probability of

reaching the optimal level via exploration. At this point, since 𝜆 is

converged, exploration will terminate. Hence, we are done. □



5.3 Model Assumptions
We make two assumptions about the human authority, H : (1) that

the human provides consistent feedback, and (2), that the human’s

feedback comes from a stationary, Markovian distribution. We dis-

cuss below practical considerations regarding these assumptions.

Regarding assumption (1), implicit in this assumption is that

humans respond appropriately to each situation, possibly with some

noise representing the likelihood of human error. However, because

of the limited scope of the system’s domain model, it could be that

perfectly consistent feedback from H ’s perspective is perceived to

be random by the system, particularly when it is not aware of the

domain features that explain the human feedback. As an example,

consider a robot that can open ‘push’ doors, but cannot open ‘pull’

doors. If the robot cannot discriminate between these types of doors,

consistent and correct human feedback (approving autonomously

opening ‘push’ doors only) may be perceived by the robot to be

arbitrary or random. Although in practice one may wish to avoid

such situations, we emphasize that the system will still converge
to its competence – possibly low competence – when the feedback

distribution appears to be random.

Regarding assumption (2) that the human feedback distribution

𝜆H is stationary and Markovian from the start, it implies that the

human has good knowledge of the system from the start. That

may not be realistic. It is more likely that the feedback signals

may very based upon the observed performance of the system

over time. However, as the human authority observes the system’s

performance, their feedback distribution will eventually reach a

stationary point as long as the system’s underlying capabilities

stay fixed. Therefore, even if there are erroneous feedback signals

provided early in this process, in the limit the system will still
converge to its competence. Furthermore, two possible means of

expediting this is to introduce a training phase at the beginning

of the system’s deployment to allow the human to observe the

system’s performance and develop accurate expectations regarding

the system’s capabilities, and to introduce standardized feedback

criteria that is made known to the humans.

6 EXPERIMENTAL RESULTS
We implemented our model in two different problem domains. The

first domain features a campus delivery robot that must learn to

properly navigate a large area featuring several kinds of obsta-

cles. The second domain features an autonomous vehicle that must

learn to properly pass an obstruction in its lane. We begin with a

description of these domains as implemented in our experiments.

Campus Delivery Robot A delivery robot must navigate a campus

to deliver packages from one location to another. An illustration of

the map used in our experiments can be seen in Figure 2. In this

domain there are two categories of potential obstacles for the robot.

The first is a crosswalk that can have differing levels of traffic – no

traffic, light traffic, and heavy traffic. Although not pictured, certain

crosswalks have better visibility than others; however, this is not

modeled by the robot and so it must learn to discriminate using

only human feedback. The second kind of obstacle is a door that the

robot must get through to enter buildings, rooms, or even different

areas of buildings once inside. Doors come in three colors – blue,

green, and red. While the robot can see the colors of the doors, the

Figure 2: Campus delivery robot domain. The robot starts in
a room on campus and must traverse both crosswalks and
doors to reach its goal state. In some cases, the robot may
learn to go around a nearby parking lot rather than take the
crosswalks due to poor visibility and learn to identify doors
that can be opened autonomously.

meaning of these colors changes from building to building and is

unknown to the robot a priori, so the system must once again rely

on human feedback to discriminate between doors it is allowed to

open and and those that is not, in each building on the campus.

Trees, walls, and roads are all avoided by the system completely.

𝜅 (𝑠, 𝑎) is initialized to be {0, 1} for all actions in obstacle states. For

states with no obstacles, the system is allowed to operate at level 3.

Autonomous Vehicle Obstacle Passing An autonomous vehicle

(AV) driving on a single-lane road has its lane blocked by an obsta-

cle that can be stopped (e.g. a parked car) or moving (e.g. a large

slow-moving tractor) and is blocking the AV from progressing. To

get around the obstacle, the AV must cross the center lines and

drive into the oncoming traffic’s lane; the AV must reason about

oncoming vehicles that it may not be able to see until it edges into

the oncoming lane, as well as vehicles behind it that may move up

to occupy its space when the AV enters the oncoming lane, at which

point the AV cannot reverse. If the agent moves into the oncoming

lane with an oncoming vehicle that is too close, the oncoming vehi-

cle does not have time to stop and will crash into the AV. However,

the oncoming vehicle may also choose to stop and wait for the

AV to take its turn and pass; while the AV can determine if the

oncoming vehicle is stopped, it must learn that it is allowed to pass

when the oncoming vehicle is waiting for it. Similarly, when the

vehicle behind it takes its space behind the obstacle and it cannot

reverse, the AV must learn to discriminate between situations that

require it to transfer control to a human and situations in which it

can operate autonomously. 𝜅 (𝑠, 𝑎) is initialized to be {0, 1} in states

where it has not entered into the oncoming lane as it must get

explicit permission to attempt to do so, and {0, 2} in states where

it is in the oncoming lane, as it is no longer safe to stop and wait

for a response, and must instead rely on the human to override and

take control when the situation becomes too dangerous.



(a) Campus delivery robot with a single task. (b) Campus delivery robot with random tasks. (c) Autonomous vehicle obstacle passing.

Figure 3: Level-optimality of the CAS across different subsets of the state space. All states refers to the entire state space.
Visited states are states the system entered at least once during the entire experiment. Reachable states are states reachable by
the policy during that episode. Cumulative signals are the total feedback signals received by the end of each episode. Results
shown are the mean and standard error over 10 trials.

6.1 Campus Delivery Robot
In the campus delivery robot domain, we conducted two experi-

ments. In the first, the start and goal states remained static through-

out all episodes resulting in the starvation of some (unvisited) state-

action pairs. In the second, the start and goal states are randomly

drawn from a collection of rooms throughout the campus map each

episode so that no state-action pair is starved.

Figure 4 plots the mean and standard error of the expected cost of

reaching the goal state in the single task experiment across episodes

averaged over 10 trials. We see that, after an initial spike in the early

episodes, the expected cost steadily decreases towards a steady state

as the agent both learns to more accurately predict human feedback

and updates its autonomy profile towards its competence.

The steady state in the expected cost is consistent with the results

shown in Figure 3a where we see that the agent converges to almost

100% level-optimality by episode 150 for all reachable states. That

is, the agent converges to a level-optimal solution that exploits

its competence and no longer visits most states. Hence the level-

optimality stagnates at ∼90% across all states and all visited states

at this time as well.

Table 1 reports the percent of actions taken at each level of

autonomy over the course of the first 150 episodes. We can see that

by episode 150 the agent goes from requesting approval 45.8% of

the time in the first episode to operating in only no autonomy and

unsupervised autonomy, indicating that the system has learned

to properly exploit where it does or does not need to rely on the

human authority. Note that to accomplish this specific task, it is

not cost-effective to request human assistance in Levels 1 and 2,

hence the agent learns to avoid them. However, this is not a general

pattern we would expect in every domain, but more of a reflection

of the agent’s competence and cost of human assistance in Levels 1

and 2 in this domain.

In the second experiment, the start and goal states are selected

randomly in each episode, representing random tasks that the agent

must complete throughout the entire campus. In this example, the

agent covers a larger portion of the state space, but interacts less

frequently with any given subset of states than it does in the first

experiment. In such a setting, because no state-action pairs are

Figure 4: Campus delivery robot expected cost per episode.

Episode Level 0 Level 1 Level 2 Level 3
0 12.5 45.8 0.0 41.7

25 25.0 12.5 50.0 12.5

100 18.2 0.0 0.0 81.8

150 12.5 0.0 0.0 87.5

Table 1: Percent of actions taken at each level of autonomy
in the single-task experiment.

starved in the limit, the agent will be guaranteed to converge to

its competence in the limit across the entire environment; how-

ever because some states may be visited very infrequently, this

convergence can take much longer than the 150 episodes it took to

converge to 100% in the first experiment across all reachable states.

As a result, it is even more important that the agent generalizes

what it has learned from prior experience and feedback.

Figure 3b shows the results of this experiment. In particular we

see that by episode 450, the system is operating at close to 100%

level-optimality across the entire state space. While this takes much

longer than the 150 episodes it took to reach 100% level-optimality

across reachable states in the first experiment, we also see that by

episode 150 in this experiment, the system is operating at ∼95%
level-optimality across the entire state space, almost five percent

higher than in the first experiment, and using a similar number



Figure 5: Obstacle passing domain expected cost per episode.

of feedback signals to reach this point. Because the system is able

to optimize its reliance on the human authority across the entire

environment, given a new task that it has not seen before, it would

be able to perform close to optimally from the start.

Also shown in Figures 3a and 3b is the cumulative number of

feedback signals the system has received by the end of each episode.

A natural concern with a system that relies on feedback from a

human is that the process of acquiring that feedback may be too

onerous on the human to make it worthwhile. However, we can

see in these figures that the system only requires ∼275 and ∼375
feedback signals respectively to reach near 100% level-optimality,

with most of the feedback coming from early episodes where the

humanmay be expecting to be more actively involved. Furthermore,

in our case all feedback comes as a result of assistive actions, and

all assistive actions produce feedback; no feedback is given simply

to provide information. This means that we are not introducing

more work for the human supervisor to train the system, but simply

utilizing existing information generated in the course of normal

operation of the semi-autonomous system.

Finally, all results shown are the mean values over 10 trials along

with standard error bars. We can see from the graphs that the stan-

dard error is consistently small across episodes indicating that there

is small variance in the performance of the system, particularly

with respect to the number of feedback signals the system needs to

reach level-optimality in this domain.

6.2 Autonomous Vehicle Obstacle Passing
In the third experiment, an autonomous vehicle (AV) must navigate

around an obstacle that is blocking its lane by moving into the

oncoming lane, which may or may not have traffic. In doing so, the

AV opens the space behind the obstacle to potentially be filled by a

rear vehicle preventing it frommoving back into the space if needed.

It is worth noting that due to the highly safety-critical nature of

this domain, we restrict the system’s capacity to generalize both

the feedback it receives and updates made to its autonomy profile.

As an example, the AV being approved to edge into the oncoming

lane when there is an oncoming vehicle far away has no impact

on the likelihood of approval for edging when there is a vehicle

some other distance away, or no observed vehicle at all. However,

the system is allowed to generalize what it learns across certain

features such as specific map location so it can apply what it learns

to other single-lane locations.

Despite this limitation, because the system interacts more con-

sistently with a larger portion of the state space in each episode,

the results we get are consistent with those in the campus delivery

robot domain. As seen in Figure 5, the expected cost decreases con-

sistently with each episode as the AV learns to predict the human

feedback better and its autonomy profile is updated towards its

competence. In this problem specifically, it so happened that the

system learned that the optimal policy for navigating the obstacle

featured actions solely taken in unsupervised autonomy. Hence at

the point where we see its level-optimality plateau in Figure 3c, the

system is no longer receiving information from the human as it is

exploiting its autonomy model by only taking actions that it can

do fully unsupervised to navigate the obstacle.

Similar to the campus delivery domain, the level-optimality

plateaus at ∼90% across both the entire state space, and states

visited at least once throughout the experiment. This indicates that

∼10% of states in the state space were either never visited, or visited

too rarely for the agent to ever learn enough to converge to level-

optimality in them. More importantly, the system is able to achieve

almost 90% level-optimality with fewer than 60 total feedback sig-

nals, most of which are obtained within the first 20 episodes. This

is desirable when dealing with a safety critical problem domain

that may be encountered infrequently in practice.

7 CONCLUSION
We present a new formal model – competence-aware system –

for decision making in semi-autonomous systems where an au-

tonomous agent can operate at different levels of autonomy, and

must optimize its autonomous operation by learning from direct

feedback signals provided by a human authority. We demonstrated

empirically that the approach enables the system to quickly learn

to operate at its underlying competence in almost all situations,

effectively optimizing its autonomous operation so as to minimize

unnecessary reliance on human intervention. We validated the ben-

efits of CAS across two simulated domains – a campus delivery

robot and an autonomous vehicle – and obtained consistent results

in all three of our experiments.

We provide theoretical results, including a new exploration rule,

gated exploration, for enabling a CAS to safely explore new levels

of autonomy in the presence of a human authority, and a proof

that under normal convergence assumptions, the system is guaran-

teed to converge to its true competence and become level-optimal.

Moreover, we showed that this result holds regardless of how the

feedback profile is initialized.

Future work includes real-world experiments on an autonomous

vehicle prototype with humans. We will also explore how we can

utilize human feedback to identify potential features missing from

the system’s world model, as well as using our model to identify

situations of low autonomy and over-reliance on a human authority.

Finally, we will examine ways to bootstrap competence learning to

facilitate fast convergence when agent capabilities are modified.
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